R. Ganesan, J. Krumm, S. Pankalla, Klaus Ludwig, M. Glesner
{"title":"用于温度传感的柔性基板上有机电子标签的设计","authors":"R. Ganesan, J. Krumm, S. Pankalla, Klaus Ludwig, M. Glesner","doi":"10.1109/ESSCIRC.2013.6649163","DOIUrl":null,"url":null,"abstract":"We demonstrate an organic smart label electronic system using p-type organic thin film transistors (OTFT) for temperature sensing applications. The electronic label consists of all organic temperature sensor, memory, logic and interface circuits and detects whether the critical temperature threshold value has been exceeded and records the data digitally in write-once-read-many (WORM) form that can be transmitted to a reader through wireless communication. A comparator is used to interface the sensor to the logic part. The logic circuit block processes and bundles the sensor information along with the necessary additional information that is required for a successful wireless transmission. We have demonstrated the operation of the reported organic smart label system using a silicon based modulator/rectifier circuit for RF communication. The organic logic circuit was built using standard cell design approach with approximately 180 p-type OTFTs. All the circuits were operated with a VDD of -20 V.","PeriodicalId":183620,"journal":{"name":"2013 Proceedings of the ESSCIRC (ESSCIRC)","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Design of an organic electronic label on a flexible substrate for temperature sensing\",\"authors\":\"R. Ganesan, J. Krumm, S. Pankalla, Klaus Ludwig, M. Glesner\",\"doi\":\"10.1109/ESSCIRC.2013.6649163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate an organic smart label electronic system using p-type organic thin film transistors (OTFT) for temperature sensing applications. The electronic label consists of all organic temperature sensor, memory, logic and interface circuits and detects whether the critical temperature threshold value has been exceeded and records the data digitally in write-once-read-many (WORM) form that can be transmitted to a reader through wireless communication. A comparator is used to interface the sensor to the logic part. The logic circuit block processes and bundles the sensor information along with the necessary additional information that is required for a successful wireless transmission. We have demonstrated the operation of the reported organic smart label system using a silicon based modulator/rectifier circuit for RF communication. The organic logic circuit was built using standard cell design approach with approximately 180 p-type OTFTs. All the circuits were operated with a VDD of -20 V.\",\"PeriodicalId\":183620,\"journal\":{\"name\":\"2013 Proceedings of the ESSCIRC (ESSCIRC)\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Proceedings of the ESSCIRC (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2013.6649163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Proceedings of the ESSCIRC (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2013.6649163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of an organic electronic label on a flexible substrate for temperature sensing
We demonstrate an organic smart label electronic system using p-type organic thin film transistors (OTFT) for temperature sensing applications. The electronic label consists of all organic temperature sensor, memory, logic and interface circuits and detects whether the critical temperature threshold value has been exceeded and records the data digitally in write-once-read-many (WORM) form that can be transmitted to a reader through wireless communication. A comparator is used to interface the sensor to the logic part. The logic circuit block processes and bundles the sensor information along with the necessary additional information that is required for a successful wireless transmission. We have demonstrated the operation of the reported organic smart label system using a silicon based modulator/rectifier circuit for RF communication. The organic logic circuit was built using standard cell design approach with approximately 180 p-type OTFTs. All the circuits were operated with a VDD of -20 V.