从现实世界的约束中派生网络拓扑

A. Mahmood, A. Jabbar, Egeman K. Cetinkaya, J. Sterbenz
{"title":"从现实世界的约束中派生网络拓扑","authors":"A. Mahmood, A. Jabbar, Egeman K. Cetinkaya, J. Sterbenz","doi":"10.1109/GLOCOMW.2010.5701678","DOIUrl":null,"url":null,"abstract":"Realistic network topologies are crucial for network research and are commonly used for the analysis, simulation, and evaluation of various mechanisms and protocols. In this paper, we discuss network topology models to generate physical topologies for backbone networks. In order to gain better understanding of current topologies and engineer networks for the future, it is necessary to generate realistic physical topologies that are governed by the infrastructure as opposed to only logical topologies that are governed by policy or higher-layer abstractions. The objective of this work is to present the principles that are key to node distributions of realistic topologies and the challenges involved. We argue that the dominant factors that influence the location of the PoPs are population density distribution and the technology penetration of a given region. Hence we implement a clustering algorithm to accurately predict the location of PoPs and later explore cost constrained models to generate realistic physical topologies.","PeriodicalId":232205,"journal":{"name":"2010 IEEE Globecom Workshops","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Deriving network topologies from real world constraints\",\"authors\":\"A. Mahmood, A. Jabbar, Egeman K. Cetinkaya, J. Sterbenz\",\"doi\":\"10.1109/GLOCOMW.2010.5701678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Realistic network topologies are crucial for network research and are commonly used for the analysis, simulation, and evaluation of various mechanisms and protocols. In this paper, we discuss network topology models to generate physical topologies for backbone networks. In order to gain better understanding of current topologies and engineer networks for the future, it is necessary to generate realistic physical topologies that are governed by the infrastructure as opposed to only logical topologies that are governed by policy or higher-layer abstractions. The objective of this work is to present the principles that are key to node distributions of realistic topologies and the challenges involved. We argue that the dominant factors that influence the location of the PoPs are population density distribution and the technology penetration of a given region. Hence we implement a clustering algorithm to accurately predict the location of PoPs and later explore cost constrained models to generate realistic physical topologies.\",\"PeriodicalId\":232205,\"journal\":{\"name\":\"2010 IEEE Globecom Workshops\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Globecom Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOMW.2010.5701678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Globecom Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2010.5701678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

真实的网络拓扑对于网络研究至关重要,通常用于各种机制和协议的分析、仿真和评估。在本文中,我们讨论了网络拓扑模型来生成骨干网的物理拓扑。为了更好地理解当前拓扑和未来的工程网络,有必要生成由基础设施管理的实际物理拓扑,而不是仅由策略或更高层抽象管理的逻辑拓扑。这项工作的目的是提出现实拓扑的节点分布的关键原则和所涉及的挑战。我们认为,影响持久性有机污染物位置的主要因素是人口密度分布和特定地区的技术普及率。因此,我们实现了一种聚类算法来准确预测持久性有机污染物的位置,然后探索成本约束模型来生成现实的物理拓扑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deriving network topologies from real world constraints
Realistic network topologies are crucial for network research and are commonly used for the analysis, simulation, and evaluation of various mechanisms and protocols. In this paper, we discuss network topology models to generate physical topologies for backbone networks. In order to gain better understanding of current topologies and engineer networks for the future, it is necessary to generate realistic physical topologies that are governed by the infrastructure as opposed to only logical topologies that are governed by policy or higher-layer abstractions. The objective of this work is to present the principles that are key to node distributions of realistic topologies and the challenges involved. We argue that the dominant factors that influence the location of the PoPs are population density distribution and the technology penetration of a given region. Hence we implement a clustering algorithm to accurately predict the location of PoPs and later explore cost constrained models to generate realistic physical topologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile radio channels' estimation for SC-FDMA systems by means of adequate noise and inter-carrier interference filtering in a transformed domain Performance enhancement in limited feedback precoded spatial multiplexing MIMO-OFDM systems by using multi-block channel prediction Techniques for embracing intra-cell unbalanced bit error characteristics in MLC NAND flash memory 4K digital cinema home theater over high throughput wireless transmission system Outage analysis for WCDMA femtocell with uplink attenuation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1