外延发射极帽,sige基双极技术,在液氮温度下具有22 ps ECL栅极延迟

J. Cressler, J. Comfort, E. Crabbé, J. Sun, J. Stork
{"title":"外延发射极帽,sige基双极技术,在液氮温度下具有22 ps ECL栅极延迟","authors":"J. Cressler, J. Comfort, E. Crabbé, J. Sun, J. Stork","doi":"10.1109/VLSIT.1992.200669","DOIUrl":null,"url":null,"abstract":"It is shown that a properly designed silicon bipolar technology can achieve significantly faster circuit speed at liquid-nitrogen temperature (LNT) than at room temperature (RT). Transistors were fabricated using a reduced-temperature process employing an in situ doped polysilicon emitter contact, a lightly doped epitaxial emitter cap layer, and a graded SiGe base. The short thermal cycle associated with this emitter contact technology allows the formation of an abrupt, heavily doped base nearly immune to carrier freezeout, while maintaining superior emitter-base leakage characteristics at LNT. Transistors have a current gain ( beta ) as high as 500 at 84 K with a cutoff frequency (f/sub T/) of 61 GHz, up from 43 GHz at 300 K. ECL circuits switch at a record 21.9 ps at 84 K at J/sub cs/=1.0 mA/ mu m/sup 2/ (25.4 ps at 310 K). For completeness the low-temperature properties of this technology are compared with more conventional ipi and pi SiGe-base designs.<<ETX>>","PeriodicalId":404756,"journal":{"name":"1992 Symposium on VLSI Technology Digest of Technical Papers","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An epitaxial emitter cap, SiGe-base bipolar technology with 22 ps ECL gate delay at liquid nitrogen temperature\",\"authors\":\"J. Cressler, J. Comfort, E. Crabbé, J. Sun, J. Stork\",\"doi\":\"10.1109/VLSIT.1992.200669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that a properly designed silicon bipolar technology can achieve significantly faster circuit speed at liquid-nitrogen temperature (LNT) than at room temperature (RT). Transistors were fabricated using a reduced-temperature process employing an in situ doped polysilicon emitter contact, a lightly doped epitaxial emitter cap layer, and a graded SiGe base. The short thermal cycle associated with this emitter contact technology allows the formation of an abrupt, heavily doped base nearly immune to carrier freezeout, while maintaining superior emitter-base leakage characteristics at LNT. Transistors have a current gain ( beta ) as high as 500 at 84 K with a cutoff frequency (f/sub T/) of 61 GHz, up from 43 GHz at 300 K. ECL circuits switch at a record 21.9 ps at 84 K at J/sub cs/=1.0 mA/ mu m/sup 2/ (25.4 ps at 310 K). For completeness the low-temperature properties of this technology are compared with more conventional ipi and pi SiGe-base designs.<<ETX>>\",\"PeriodicalId\":404756,\"journal\":{\"name\":\"1992 Symposium on VLSI Technology Digest of Technical Papers\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1992 Symposium on VLSI Technology Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.1992.200669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1992 Symposium on VLSI Technology Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.1992.200669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

结果表明,设计合理的硅双极技术可以在液氮温度下实现比室温下更快的电路速度。采用原位掺杂多晶硅发射极触点、轻掺杂外延发射极帽层和梯度SiGe基底的低温工艺制备晶体管。与这种发射极接触技术相关的短热循环允许形成一个突然的、高掺杂的基极,几乎不受载流子冻结的影响,同时在LNT保持优越的发射极-基极泄漏特性。晶体管的电流增益(beta)在84 K时高达500,截止频率(f/sub T/)为61 GHz,高于300 K时的43 GHz。ECL电路在84 K时以创纪录的21.9 ps切换,J/sub /=1.0 mA/ μ m/sup 2/ (310 K时25.4 ps)。为了完整起见,该技术的低温特性与更传统的ipi和pi sige基础设计进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An epitaxial emitter cap, SiGe-base bipolar technology with 22 ps ECL gate delay at liquid nitrogen temperature
It is shown that a properly designed silicon bipolar technology can achieve significantly faster circuit speed at liquid-nitrogen temperature (LNT) than at room temperature (RT). Transistors were fabricated using a reduced-temperature process employing an in situ doped polysilicon emitter contact, a lightly doped epitaxial emitter cap layer, and a graded SiGe base. The short thermal cycle associated with this emitter contact technology allows the formation of an abrupt, heavily doped base nearly immune to carrier freezeout, while maintaining superior emitter-base leakage characteristics at LNT. Transistors have a current gain ( beta ) as high as 500 at 84 K with a cutoff frequency (f/sub T/) of 61 GHz, up from 43 GHz at 300 K. ECL circuits switch at a record 21.9 ps at 84 K at J/sub cs/=1.0 mA/ mu m/sup 2/ (25.4 ps at 310 K). For completeness the low-temperature properties of this technology are compared with more conventional ipi and pi SiGe-base designs.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Repair technique for phase shifting masks using silicon-containing resist A Si bipolar transistor with f/sub max/ of 40 GHz and its application to a 35 GHz 1/16 dynamic frequency divider Trends in single-wafer processing Ultra-thin silicon dioxide leakage current and scaling limit Conductive channel in ONO formed by controlled dielectric breakdown
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1