并联移相变压器整流器谐波消除性能分析

Jongwan Kim, J. Lai, Xiong Liu
{"title":"并联移相变压器整流器谐波消除性能分析","authors":"Jongwan Kim, J. Lai, Xiong Liu","doi":"10.1109/SPEC.2018.8635850","DOIUrl":null,"url":null,"abstract":"A 12-pulse rectifier has been widely used for harmonic mitigation in a large-scale power system. Recently, a shunt phase-shift transformer rectifier was proposed and already has been utilized in a marine transportation. For a power system equipped with multiple generators, the shunt phase-shift transformer front-end selectively eliminates 5th and 7th harmonic component with more than 75% size reduction over the conventional 12-pulse rectifier. However, a shunt phase-shift transformer rectifier requires additional source inductors to eliminate the undesired harmonics and the relationship between the source impedance and harmonic elimination has not been verified. This paper evaluates the effect of the line inductor on a harmonic cancellation performance of the shunt phase-shift transformer. An equivalent circuit analysis and a mathematical derivation of the shunt phase-shift transformer rectifier are provided and the relationship between the source impedance and harmonic cancellation is mathematically derived. The computer simulation and experimental test results from proto type hardware verify the equivalent model and the mathematical analysis.","PeriodicalId":335893,"journal":{"name":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Analysis of Harmonic Cancellation Performance of a Shunt Phase-Shift Transformer Rectifier\",\"authors\":\"Jongwan Kim, J. Lai, Xiong Liu\",\"doi\":\"10.1109/SPEC.2018.8635850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 12-pulse rectifier has been widely used for harmonic mitigation in a large-scale power system. Recently, a shunt phase-shift transformer rectifier was proposed and already has been utilized in a marine transportation. For a power system equipped with multiple generators, the shunt phase-shift transformer front-end selectively eliminates 5th and 7th harmonic component with more than 75% size reduction over the conventional 12-pulse rectifier. However, a shunt phase-shift transformer rectifier requires additional source inductors to eliminate the undesired harmonics and the relationship between the source impedance and harmonic elimination has not been verified. This paper evaluates the effect of the line inductor on a harmonic cancellation performance of the shunt phase-shift transformer. An equivalent circuit analysis and a mathematical derivation of the shunt phase-shift transformer rectifier are provided and the relationship between the source impedance and harmonic cancellation is mathematically derived. The computer simulation and experimental test results from proto type hardware verify the equivalent model and the mathematical analysis.\",\"PeriodicalId\":335893,\"journal\":{\"name\":\"2018 IEEE 4th Southern Power Electronics Conference (SPEC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 4th Southern Power Electronics Conference (SPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPEC.2018.8635850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC.2018.8635850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

12脉冲整流器已广泛应用于大型电力系统的谐波抑制。近年来,提出了一种并联移相变压器整流器,并已在海上运输中得到应用。对于配备多台发电机的电力系统,并联移相变压器前端选择性地消除了5次和7次谐波分量,比传统的12脉冲整流器减小了75%以上的尺寸。然而,并联移相变压器整流器需要额外的源电感来消除不希望的谐波,并且源阻抗和谐波消除之间的关系尚未得到验证。本文评价了线路电感对并联移相变压器谐波消除性能的影响。给出了并联移相变压器整流器的等效电路分析和数学推导,并推导了源阻抗与谐波抵消的关系。计算机仿真和样机硬件试验结果验证了等效模型和数学分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Harmonic Cancellation Performance of a Shunt Phase-Shift Transformer Rectifier
A 12-pulse rectifier has been widely used for harmonic mitigation in a large-scale power system. Recently, a shunt phase-shift transformer rectifier was proposed and already has been utilized in a marine transportation. For a power system equipped with multiple generators, the shunt phase-shift transformer front-end selectively eliminates 5th and 7th harmonic component with more than 75% size reduction over the conventional 12-pulse rectifier. However, a shunt phase-shift transformer rectifier requires additional source inductors to eliminate the undesired harmonics and the relationship between the source impedance and harmonic elimination has not been verified. This paper evaluates the effect of the line inductor on a harmonic cancellation performance of the shunt phase-shift transformer. An equivalent circuit analysis and a mathematical derivation of the shunt phase-shift transformer rectifier are provided and the relationship between the source impedance and harmonic cancellation is mathematically derived. The computer simulation and experimental test results from proto type hardware verify the equivalent model and the mathematical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Buck Converter with Cost-Effective GaN/Si Hybrid Switches and CRM Operation for High-Efficiency and High-Power-Density Applications Control Strategy for Low Voltage Ride Through (LVRT) Operation of Two-Stage Photovoltaic Power Generation System Simplification of the Acquisition System for Sensored Vector Control using Resolver Sensor based on FDM and Current Synchronous Sampling Finite Control Set Model Predictive Control of an Active Nested Neutral-Point-Clamped Converter Thermal Management of an Electric Ferry Lithium-Ion Battery System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1