定位标签模内天线研究

Laura López-Mir, Alassane Sidibe, Aina López Porta, Enric Pascual Cuenca, Oriol Font Bagüeste, Benjamin Dhuiège, G. Déprès
{"title":"定位标签模内天线研究","authors":"Laura López-Mir, Alassane Sidibe, Aina López Porta, Enric Pascual Cuenca, Oriol Font Bagüeste, Benjamin Dhuiège, G. Déprès","doi":"10.1109/fleps53764.2022.9781551","DOIUrl":null,"url":null,"abstract":"This paper presents a preliminary study for the construction of an in-mould smart tag as a robust flexible and battery-free label with a radiofrequency energy harvesting sub-system and enhanced geolocation features. The proposed flexible geolocation tag is realized by means of a specific production process applied over printed antennas and hybridized rigid control module. Advanced materials such as highly conductive inks and nanocellulose-based substrates, as well as innovative manufacturing processes covered by the in-mould electronics framework, are investigated. Through simulations and experimental validation, the effect over printed antennas of an over-moulded layer of Thermoplastic Polyurethane (TPU) is explored. Such material due to its dielectric properties and thickness tends to down-shift the resonance frequency of the antenna, favouring miniaturization, but also increases its loss resistance. A 1.25 mm thick TPU was chosen for the final tag to ensure both flexibility and a realized positive gain of +0.7 dBi at 865 MHz. For further development of the tag, materials electrical and dielectric properties must be clearly defined in simulation to correct frequency shifts.","PeriodicalId":221424,"journal":{"name":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards In-mould Antennas for Geolocation Tags\",\"authors\":\"Laura López-Mir, Alassane Sidibe, Aina López Porta, Enric Pascual Cuenca, Oriol Font Bagüeste, Benjamin Dhuiège, G. Déprès\",\"doi\":\"10.1109/fleps53764.2022.9781551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a preliminary study for the construction of an in-mould smart tag as a robust flexible and battery-free label with a radiofrequency energy harvesting sub-system and enhanced geolocation features. The proposed flexible geolocation tag is realized by means of a specific production process applied over printed antennas and hybridized rigid control module. Advanced materials such as highly conductive inks and nanocellulose-based substrates, as well as innovative manufacturing processes covered by the in-mould electronics framework, are investigated. Through simulations and experimental validation, the effect over printed antennas of an over-moulded layer of Thermoplastic Polyurethane (TPU) is explored. Such material due to its dielectric properties and thickness tends to down-shift the resonance frequency of the antenna, favouring miniaturization, but also increases its loss resistance. A 1.25 mm thick TPU was chosen for the final tag to ensure both flexibility and a realized positive gain of +0.7 dBi at 865 MHz. For further development of the tag, materials electrical and dielectric properties must be clearly defined in simulation to correct frequency shifts.\",\"PeriodicalId\":221424,\"journal\":{\"name\":\"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/fleps53764.2022.9781551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fleps53764.2022.9781551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种模具内智能标签的初步研究,该标签具有射频能量收集子系统和增强的地理定位功能,是一种鲁棒灵活的无电池标签。所提出的柔性地理定位标签是通过应用于印刷天线和混合刚性控制模块的特定生产工艺来实现的。先进的材料,如高导电油墨和纳米纤维素基基材,以及创新的制造工艺涵盖了模内电子框架,进行了研究。通过仿真和实验验证,探讨了热塑性聚氨酯(TPU)复模层对印刷天线的影响。这种材料由于其介电特性和厚度,使天线的谐振频率趋于下移,有利于小型化,但也增加了其损耗电阻。最终标签选择1.25 mm厚的TPU,以确保灵活性和在865 MHz时实现的+0.7 dBi正增益。为了进一步开发标签,必须在模拟中明确定义材料的电学和介电特性,以纠正频移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards In-mould Antennas for Geolocation Tags
This paper presents a preliminary study for the construction of an in-mould smart tag as a robust flexible and battery-free label with a radiofrequency energy harvesting sub-system and enhanced geolocation features. The proposed flexible geolocation tag is realized by means of a specific production process applied over printed antennas and hybridized rigid control module. Advanced materials such as highly conductive inks and nanocellulose-based substrates, as well as innovative manufacturing processes covered by the in-mould electronics framework, are investigated. Through simulations and experimental validation, the effect over printed antennas of an over-moulded layer of Thermoplastic Polyurethane (TPU) is explored. Such material due to its dielectric properties and thickness tends to down-shift the resonance frequency of the antenna, favouring miniaturization, but also increases its loss resistance. A 1.25 mm thick TPU was chosen for the final tag to ensure both flexibility and a realized positive gain of +0.7 dBi at 865 MHz. For further development of the tag, materials electrical and dielectric properties must be clearly defined in simulation to correct frequency shifts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conducting Polymer based Field-Effect Transistor for Volatile Organic Compound Sensing Demonstration of near-field capacitive standard communication bus for ultrathin reconfigurable sensor nodes 3D Printed Embedded Strain Sensor with Enhanced Performance Flexible and stretchable conductive fabric for temperature detection Facile Fabrication of Graphene Oxide-based Flexible Temperature Sensor and Improving its Humidity Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1