PCA-SIR:一种新的非线性监督降维方法在脑电疼痛预测中的应用

Y. Tu, Y. Hung, Li Hu, Zhiguo Zhang
{"title":"PCA-SIR:一种新的非线性监督降维方法在脑电疼痛预测中的应用","authors":"Y. Tu, Y. Hung, Li Hu, Zhiguo Zhang","doi":"10.1109/NER.2015.7146796","DOIUrl":null,"url":null,"abstract":"Dimension reduction is critical in identifying a small set of discriminative features that are predictive of behavior or cognition from high-dimensional neuroimaging data, such as EEG and fMRI. In the present study, we proposed a novel nonlinear supervised dimension reduction technique, named PCA-SIR (Principal Component Analysis and Sliced Inverse Regression), for analyzing high-dimensional EEG time-course data. Compared with conventional dimension reduction methods used for EEG, such as PCA and partial least-squares (PLS), the PCA-SIR method can make use of nonlinear relationship between class labels (i.e., behavioral or cognitive parameters) and predictors (i.e., EEG samples) to achieve the effective dimension reduction (e.d.r.) directions. We applied the new PCA-SIR method to predict the subjective pain perception (at a level ranging from 0 to 10) from single-trial laser-evoked EEG time courses. Experimental results on 96 subjects showed that reduced features by PCA-SIR can lead to significantly higher prediction accuracy than those by PCA and PLS. Therefore, PCA-SIR could be a promising supervised dimension reduction technique for multivariate pattern analysis of high-dimensional neuroimaging data.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"PCA-SIR: A new nonlinear supervised dimension reduction method with application to pain prediction from EEG\",\"authors\":\"Y. Tu, Y. Hung, Li Hu, Zhiguo Zhang\",\"doi\":\"10.1109/NER.2015.7146796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dimension reduction is critical in identifying a small set of discriminative features that are predictive of behavior or cognition from high-dimensional neuroimaging data, such as EEG and fMRI. In the present study, we proposed a novel nonlinear supervised dimension reduction technique, named PCA-SIR (Principal Component Analysis and Sliced Inverse Regression), for analyzing high-dimensional EEG time-course data. Compared with conventional dimension reduction methods used for EEG, such as PCA and partial least-squares (PLS), the PCA-SIR method can make use of nonlinear relationship between class labels (i.e., behavioral or cognitive parameters) and predictors (i.e., EEG samples) to achieve the effective dimension reduction (e.d.r.) directions. We applied the new PCA-SIR method to predict the subjective pain perception (at a level ranging from 0 to 10) from single-trial laser-evoked EEG time courses. Experimental results on 96 subjects showed that reduced features by PCA-SIR can lead to significantly higher prediction accuracy than those by PCA and PLS. Therefore, PCA-SIR could be a promising supervised dimension reduction technique for multivariate pattern analysis of high-dimensional neuroimaging data.\",\"PeriodicalId\":137451,\"journal\":{\"name\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2015.7146796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

降维对于从高维神经成像数据(如EEG和fMRI)中识别一小部分可预测行为或认知的判别特征至关重要。在本研究中,我们提出了一种新的非线性监督降维技术PCA-SIR(主成分分析和切片逆回归),用于分析高维脑电图时间过程数据。与传统的脑电信号降维方法,如PCA和偏最小二乘(PLS)相比,PCA- sir方法可以利用类标签(即行为或认知参数)与预测因子(即脑电信号样本)之间的非线性关系来实现有效的降维方向。我们应用新的PCA-SIR方法预测单次试验激光诱发脑电图时间过程的主观痛觉(在0到10的水平范围内)。96个被试的实验结果表明,PCA- sir对特征进行约简后的预测准确率明显高于PCA和PLS,因此PCA- sir是一种有前途的监督降维技术,可用于高维神经影像数据的多变量模式分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PCA-SIR: A new nonlinear supervised dimension reduction method with application to pain prediction from EEG
Dimension reduction is critical in identifying a small set of discriminative features that are predictive of behavior or cognition from high-dimensional neuroimaging data, such as EEG and fMRI. In the present study, we proposed a novel nonlinear supervised dimension reduction technique, named PCA-SIR (Principal Component Analysis and Sliced Inverse Regression), for analyzing high-dimensional EEG time-course data. Compared with conventional dimension reduction methods used for EEG, such as PCA and partial least-squares (PLS), the PCA-SIR method can make use of nonlinear relationship between class labels (i.e., behavioral or cognitive parameters) and predictors (i.e., EEG samples) to achieve the effective dimension reduction (e.d.r.) directions. We applied the new PCA-SIR method to predict the subjective pain perception (at a level ranging from 0 to 10) from single-trial laser-evoked EEG time courses. Experimental results on 96 subjects showed that reduced features by PCA-SIR can lead to significantly higher prediction accuracy than those by PCA and PLS. Therefore, PCA-SIR could be a promising supervised dimension reduction technique for multivariate pattern analysis of high-dimensional neuroimaging data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
iNODE in-vivo testing for selective vagus nerve recording and stimulation Computational studies on urinary bladder smooth muscle: Modeling ion channels and their role in generating electrical activity Fast calibration of a thirteen-command BCI by simulating SSVEPs from trains of transient VEPs - towards time-domain SSVEP BCI paradigms A hybrid NMES-exoskeleton for real objects interaction Computationally efficient, configurable, causal, real-time phase detection applied to local field potential oscillations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1