卷积神经网络加速器的空间数据依赖图模拟器

Jooho Wang, Ji-Won Kim, Sungmin Moon, Sunwoo Kim, Sungkyung Park, C. Park
{"title":"卷积神经网络加速器的空间数据依赖图模拟器","authors":"Jooho Wang, Ji-Won Kim, Sungmin Moon, Sunwoo Kim, Sungkyung Park, C. Park","doi":"10.1109/AICAS.2019.8771561","DOIUrl":null,"url":null,"abstract":"A spatial data dependence graph (S-DDG) is newly proposed to model an accelerator dataflow. The pre-RTL simulator based on the S-DDG helps to explore the design space in the early design phase. The simulation results show the impact of memory latency and bandwidth on a convolutional neural network (CNN) accelerator.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spatial Data Dependence Graph Simulator for Convolutional Neural Network Accelerators\",\"authors\":\"Jooho Wang, Ji-Won Kim, Sungmin Moon, Sunwoo Kim, Sungkyung Park, C. Park\",\"doi\":\"10.1109/AICAS.2019.8771561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A spatial data dependence graph (S-DDG) is newly proposed to model an accelerator dataflow. The pre-RTL simulator based on the S-DDG helps to explore the design space in the early design phase. The simulation results show the impact of memory latency and bandwidth on a convolutional neural network (CNN) accelerator.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种空间数据依赖图(S-DDG)来对加速器数据流进行建模。基于S-DDG的预rtl模拟器有助于在早期设计阶段探索设计空间。仿真结果显示了存储延迟和带宽对卷积神经网络加速器的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial Data Dependence Graph Simulator for Convolutional Neural Network Accelerators
A spatial data dependence graph (S-DDG) is newly proposed to model an accelerator dataflow. The pre-RTL simulator based on the S-DDG helps to explore the design space in the early design phase. The simulation results show the impact of memory latency and bandwidth on a convolutional neural network (CNN) accelerator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence of Things Wearable System for Cardiac Disease Detection Fast event-driven incremental learning of hand symbols Accelerating CNN-RNN Based Machine Health Monitoring on FPGA Neuromorphic networks on the SpiNNaker platform Complexity Reduction on HEVC Intra Mode Decision with modified LeNet-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1