Manshu Bishnoi, R. Bhattacharya, V. Aggarwal, T. Kukal, Jonathan Smith, S. Aniruddhan
{"title":"从系统预算到系统实现——一个22nm FDSOI 5G毫米波前端模块(FEM)的视角","authors":"Manshu Bishnoi, R. Bhattacharya, V. Aggarwal, T. Kukal, Jonathan Smith, S. Aniruddhan","doi":"10.1109/ICEE56203.2022.10117630","DOIUrl":null,"url":null,"abstract":"A comprehensive top-down system design methodology is presented and supported with a design of a Front-End Module (FEM) for 5G mobile applications targeting 24GHz-29GHz. While adopting package and PCB floor-planning and thermal challenges early in the design, a link budget analysis of a FEM in a system simulator followed by an implementation in GlobalFoundries' 22nm FDSOI process is reported with a focus on novel architectures to address system constraints. The FEM shows an excellent correlation between simulations and measurements and is further characterized post silicon by applying actual 5G signals in a real-time measurement mimicked simulation environment. A unified environment for co-designing and analysing the IC and package system is also described.","PeriodicalId":281727,"journal":{"name":"2022 IEEE International Conference on Emerging Electronics (ICEE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"System Budgeting to System Realisation - A 22nm FDSOI 5G mmWave Front-End Module (FEM) Perspective\",\"authors\":\"Manshu Bishnoi, R. Bhattacharya, V. Aggarwal, T. Kukal, Jonathan Smith, S. Aniruddhan\",\"doi\":\"10.1109/ICEE56203.2022.10117630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A comprehensive top-down system design methodology is presented and supported with a design of a Front-End Module (FEM) for 5G mobile applications targeting 24GHz-29GHz. While adopting package and PCB floor-planning and thermal challenges early in the design, a link budget analysis of a FEM in a system simulator followed by an implementation in GlobalFoundries' 22nm FDSOI process is reported with a focus on novel architectures to address system constraints. The FEM shows an excellent correlation between simulations and measurements and is further characterized post silicon by applying actual 5G signals in a real-time measurement mimicked simulation environment. A unified environment for co-designing and analysing the IC and package system is also described.\",\"PeriodicalId\":281727,\"journal\":{\"name\":\"2022 IEEE International Conference on Emerging Electronics (ICEE)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Emerging Electronics (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEE56203.2022.10117630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEE56203.2022.10117630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
System Budgeting to System Realisation - A 22nm FDSOI 5G mmWave Front-End Module (FEM) Perspective
A comprehensive top-down system design methodology is presented and supported with a design of a Front-End Module (FEM) for 5G mobile applications targeting 24GHz-29GHz. While adopting package and PCB floor-planning and thermal challenges early in the design, a link budget analysis of a FEM in a system simulator followed by an implementation in GlobalFoundries' 22nm FDSOI process is reported with a focus on novel architectures to address system constraints. The FEM shows an excellent correlation between simulations and measurements and is further characterized post silicon by applying actual 5G signals in a real-time measurement mimicked simulation environment. A unified environment for co-designing and analysing the IC and package system is also described.