V. Dargahi, K. Corzine, J. Enslin, José R. Rodríguez, F. Blaabjerg
{"title":"改进有源中性点箝位(I-ANPC)多电平变换器:基本电路拓扑、创新调制技术和实验验证","authors":"V. Dargahi, K. Corzine, J. Enslin, José R. Rodríguez, F. Blaabjerg","doi":"10.1109/PECI.2018.8334994","DOIUrl":null,"url":null,"abstract":"For medium-voltage (MV) high-power industrial applications including HVDC and variable-speed motor drives, multilevel converters are deemed predominant topology. One of the promising derived-topologies from neutral-point-clamped (NPC) configuration is active NPC (ANPC) inverter that offers improved characteristics. This paper proposes an improved ANPC (I-ANPC) converter controlled with an innovative logic-equation-based modulation method. The I-ANPC converter phase leg is realized by the cascaded connection of the single ANPC converter and one H-bridge cell. The H-bridge converter is formed by one flying-capacitor (FC) and four switches such as the insulated-gate bipolar transistors (IGBTs). The I-ANPC converter has considerable advantages over the classic multilevel inverters that makes it a preferable topology for MV applications. The substantial reduction in the number of cells in comparison with classic ANPC converter along with a drastic decrease in the total voltage rating and the stored energy of the capacitors are the main advantages offered by the I-ANPC multilevel converter over the FC-based inverters. This study explores the fundamental circuit of the proposed I-ANPC multilevel and its derived innovative logic-equation-based modulation technique, and provides an exhaustive comparison with FC-based classic converters. The simulation and experimental results are presented to validate the proposed I-ANPC topology and its logic-equation-based control strategy.","PeriodicalId":151630,"journal":{"name":"2018 IEEE Power and Energy Conference at Illinois (PECI)","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Improved active-neutral-point-clamped (I-ANPC) multilevel converter: Fundamental circuit topology, innovative modulation technique, and experimental validation\",\"authors\":\"V. Dargahi, K. Corzine, J. Enslin, José R. Rodríguez, F. Blaabjerg\",\"doi\":\"10.1109/PECI.2018.8334994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For medium-voltage (MV) high-power industrial applications including HVDC and variable-speed motor drives, multilevel converters are deemed predominant topology. One of the promising derived-topologies from neutral-point-clamped (NPC) configuration is active NPC (ANPC) inverter that offers improved characteristics. This paper proposes an improved ANPC (I-ANPC) converter controlled with an innovative logic-equation-based modulation method. The I-ANPC converter phase leg is realized by the cascaded connection of the single ANPC converter and one H-bridge cell. The H-bridge converter is formed by one flying-capacitor (FC) and four switches such as the insulated-gate bipolar transistors (IGBTs). The I-ANPC converter has considerable advantages over the classic multilevel inverters that makes it a preferable topology for MV applications. The substantial reduction in the number of cells in comparison with classic ANPC converter along with a drastic decrease in the total voltage rating and the stored energy of the capacitors are the main advantages offered by the I-ANPC multilevel converter over the FC-based inverters. This study explores the fundamental circuit of the proposed I-ANPC multilevel and its derived innovative logic-equation-based modulation technique, and provides an exhaustive comparison with FC-based classic converters. The simulation and experimental results are presented to validate the proposed I-ANPC topology and its logic-equation-based control strategy.\",\"PeriodicalId\":151630,\"journal\":{\"name\":\"2018 IEEE Power and Energy Conference at Illinois (PECI)\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Power and Energy Conference at Illinois (PECI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PECI.2018.8334994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Power and Energy Conference at Illinois (PECI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECI.2018.8334994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved active-neutral-point-clamped (I-ANPC) multilevel converter: Fundamental circuit topology, innovative modulation technique, and experimental validation
For medium-voltage (MV) high-power industrial applications including HVDC and variable-speed motor drives, multilevel converters are deemed predominant topology. One of the promising derived-topologies from neutral-point-clamped (NPC) configuration is active NPC (ANPC) inverter that offers improved characteristics. This paper proposes an improved ANPC (I-ANPC) converter controlled with an innovative logic-equation-based modulation method. The I-ANPC converter phase leg is realized by the cascaded connection of the single ANPC converter and one H-bridge cell. The H-bridge converter is formed by one flying-capacitor (FC) and four switches such as the insulated-gate bipolar transistors (IGBTs). The I-ANPC converter has considerable advantages over the classic multilevel inverters that makes it a preferable topology for MV applications. The substantial reduction in the number of cells in comparison with classic ANPC converter along with a drastic decrease in the total voltage rating and the stored energy of the capacitors are the main advantages offered by the I-ANPC multilevel converter over the FC-based inverters. This study explores the fundamental circuit of the proposed I-ANPC multilevel and its derived innovative logic-equation-based modulation technique, and provides an exhaustive comparison with FC-based classic converters. The simulation and experimental results are presented to validate the proposed I-ANPC topology and its logic-equation-based control strategy.