组织和相组成对少合金亚稳和二次硬化钢耐磨性影响的研究

Економнолегованих Метастабільних, ТА Вториннотвердіючих Сталей, Б ГЛУШКОВАД., докт. техн
{"title":"组织和相组成对少合金亚稳和二次硬化钢耐磨性影响的研究","authors":"Економнолегованих Метастабільних, ТА Вториннотвердіючих Сталей, Б ГЛУШКОВАД., докт. техн","doi":"10.30838/j.bpsacea.2312.140723.50.954","DOIUrl":null,"url":null,"abstract":"Introduction. The paper considers the influence of wear on the formation of a “white band” in metastable austenitic, martensitic-austenitic and secondary hardening steels of the Cr−Mn−Ti system additionally alloyed with Mo, B, V. The influence of the structure and phase composition on the wear resistance of sparing. Results. Surfacing of the studied materials was carried out in copper molds with different rates of forced cooling. Metastable austenitic, martensitic-austenitic and secondary hardening steels of the Cr−Mn−Ti system additionally alloyed with Mo, B, V were studied. Additional alloying of these steels with titanium in an amount of 2...5 % contributed to the prevention of spalling along the fusion zone. Near the fusion line there is a base metal zone with a width of 7...15 µm. After testing at the volume temperature of the working part of the specimen ТV = 553…573 K in the contact volumes of the deposited metal of the 30Kh2V8F type, broadening of the grain boundaries, shear lines, finer grains compared to the underlying layers were revealed. Outside the zone of plastic deformation, the size of the grains corresponds to their sizes before the start of testing, the grain boundaries are relatively thin. The number and location of carbides observed at X430, X80O magnifications are also similar to the structural characteristics of the deposited metal of the 30Kh2V8F type. At close values of the contact pressure in the friction pair, the time of formation of a crack of critical length increases with an increase in the effective surface energy γе (including the energy of plastic deformation). Thus, the crack resistance indices (CR, j-integral, δС) and, consequently, the wear resistance of maraging steels are higher than those of metastable and tool steels. Conclusions. The conducted studies confirm the possibility of the formation of a “white band” both in alloys with a high concentration of elements − austenitizers (Mn, C, Ni), and when alloyed with carbide-forming elements with a relatively low affinity for carbon (V, Mo). The crack resistance indices (CR, j-integral, δС) and, consequently, the wear resistance of maraging steels is higher than those of metastable and tool steels.","PeriodicalId":228894,"journal":{"name":"Ukrainian Journal of Civil Engineering and Architecture","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STUDY OF THE EFFECT OF STRUCTURE AND PHASE COMPOSITION ON THE WEAR RESISTANCE OF SPARINGLY ALLOYED METASTABLE AND SECONDARY HARDENING STEELS\",\"authors\":\"Економнолегованих Метастабільних, ТА Вториннотвердіючих Сталей, Б ГЛУШКОВАД., докт. техн\",\"doi\":\"10.30838/j.bpsacea.2312.140723.50.954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. The paper considers the influence of wear on the formation of a “white band” in metastable austenitic, martensitic-austenitic and secondary hardening steels of the Cr−Mn−Ti system additionally alloyed with Mo, B, V. The influence of the structure and phase composition on the wear resistance of sparing. Results. Surfacing of the studied materials was carried out in copper molds with different rates of forced cooling. Metastable austenitic, martensitic-austenitic and secondary hardening steels of the Cr−Mn−Ti system additionally alloyed with Mo, B, V were studied. Additional alloying of these steels with titanium in an amount of 2...5 % contributed to the prevention of spalling along the fusion zone. Near the fusion line there is a base metal zone with a width of 7...15 µm. After testing at the volume temperature of the working part of the specimen ТV = 553…573 K in the contact volumes of the deposited metal of the 30Kh2V8F type, broadening of the grain boundaries, shear lines, finer grains compared to the underlying layers were revealed. Outside the zone of plastic deformation, the size of the grains corresponds to their sizes before the start of testing, the grain boundaries are relatively thin. The number and location of carbides observed at X430, X80O magnifications are also similar to the structural characteristics of the deposited metal of the 30Kh2V8F type. At close values of the contact pressure in the friction pair, the time of formation of a crack of critical length increases with an increase in the effective surface energy γе (including the energy of plastic deformation). Thus, the crack resistance indices (CR, j-integral, δС) and, consequently, the wear resistance of maraging steels are higher than those of metastable and tool steels. Conclusions. The conducted studies confirm the possibility of the formation of a “white band” both in alloys with a high concentration of elements − austenitizers (Mn, C, Ni), and when alloyed with carbide-forming elements with a relatively low affinity for carbon (V, Mo). The crack resistance indices (CR, j-integral, δС) and, consequently, the wear resistance of maraging steels is higher than those of metastable and tool steels.\",\"PeriodicalId\":228894,\"journal\":{\"name\":\"Ukrainian Journal of Civil Engineering and Architecture\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Journal of Civil Engineering and Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30838/j.bpsacea.2312.140723.50.954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Journal of Civil Engineering and Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30838/j.bpsacea.2312.140723.50.954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍。本文研究了磨损对加Mo、B、v合金的Cr - Mn - Ti系亚稳奥氏体、马氏体-奥氏体及二次硬化钢中“白带”形成的影响,以及组织和相组成对合金耐磨性的影响。结果。所研究的材料在铜模具中以不同的强制冷却速率进行堆焊。研究了Cr - Mn - Ti系外加Mo、B、V合金的亚稳奥氏体、马氏体-奥氏体和二次硬化钢。这些钢与钛的额外合金化量为2…5%有助于防止沿融合区剥落。在熔合线附近有一个宽度为7…15µm。在30Kh2V8F型试样工作部分的体积温度ТV = 553…573 K下测试后,沉积金属的接触体积中晶界变宽,剪切线变细,晶粒比下伏层细。在塑性变形区外,晶粒尺寸与试验开始前一致,晶界相对较薄。在X430、X80O倍率下观察到的碳化物数量和位置也与30Kh2V8F型沉积金属的结构特征相似。当摩擦副接触压力接近时,裂纹形成临界长度的时间随着有效表面能(包括塑性变形能)的增加而增加。因此,马氏体时效钢的抗裂指数(CR, j积分,δС)和耐磨性都高于亚稳钢和工具钢。结论。所进行的研究证实,在含有高浓度元素-奥氏体化剂(Mn, C, Ni)的合金中,以及与碳亲和力相对较低的碳化物形成元素(V, Mo)的合金中,都有可能形成“白带”。马氏体时效钢的抗裂指数(CR, j积分,δС)和耐磨性均高于亚稳钢和工具钢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STUDY OF THE EFFECT OF STRUCTURE AND PHASE COMPOSITION ON THE WEAR RESISTANCE OF SPARINGLY ALLOYED METASTABLE AND SECONDARY HARDENING STEELS
Introduction. The paper considers the influence of wear on the formation of a “white band” in metastable austenitic, martensitic-austenitic and secondary hardening steels of the Cr−Mn−Ti system additionally alloyed with Mo, B, V. The influence of the structure and phase composition on the wear resistance of sparing. Results. Surfacing of the studied materials was carried out in copper molds with different rates of forced cooling. Metastable austenitic, martensitic-austenitic and secondary hardening steels of the Cr−Mn−Ti system additionally alloyed with Mo, B, V were studied. Additional alloying of these steels with titanium in an amount of 2...5 % contributed to the prevention of spalling along the fusion zone. Near the fusion line there is a base metal zone with a width of 7...15 µm. After testing at the volume temperature of the working part of the specimen ТV = 553…573 K in the contact volumes of the deposited metal of the 30Kh2V8F type, broadening of the grain boundaries, shear lines, finer grains compared to the underlying layers were revealed. Outside the zone of plastic deformation, the size of the grains corresponds to their sizes before the start of testing, the grain boundaries are relatively thin. The number and location of carbides observed at X430, X80O magnifications are also similar to the structural characteristics of the deposited metal of the 30Kh2V8F type. At close values of the contact pressure in the friction pair, the time of formation of a crack of critical length increases with an increase in the effective surface energy γе (including the energy of plastic deformation). Thus, the crack resistance indices (CR, j-integral, δС) and, consequently, the wear resistance of maraging steels are higher than those of metastable and tool steels. Conclusions. The conducted studies confirm the possibility of the formation of a “white band” both in alloys with a high concentration of elements − austenitizers (Mn, C, Ni), and when alloyed with carbide-forming elements with a relatively low affinity for carbon (V, Mo). The crack resistance indices (CR, j-integral, δС) and, consequently, the wear resistance of maraging steels is higher than those of metastable and tool steels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NEURAL NETWORKS IN ARCHITECTURE: FROM IDEA TO IMPLEMENTATION POSSIBLE CONSTRUCTION FEATURES OF EQUIPMENT FOR RADONOMETRY OF BOTTOM SEDIMENTS ON THE SEA SHELF DURING RESEARCH AT SHORE NPP SITES CALCULATED DETERMINATION OF CHARACTERISTICS OF SHRINKAGE AND TOUCH OF CONCRETE RESEARCH ON THE RELATIONSHIP BETWEEN THE THICKNESS AND THE STRUCTURAL CONDITION OF ROLLED METAL FROM LOW-CARBON LOW-ALLOY STEEL 10G2FB THE INFLUENCE OF THE DEVELOPMENT OF COMPUTER TECHNOLOGIES ON THE PROCESS OF ARCHITECTURAL DESIGN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1