将系统测试fmax与结构测试fmax和过程监控测量相关联

Janine Chen, Jing Zeng, Li-C. Wang, Michael Mateja
{"title":"将系统测试fmax与结构测试fmax和过程监控测量相关联","authors":"Janine Chen, Jing Zeng, Li-C. Wang, Michael Mateja","doi":"10.1109/ASPDAC.2010.5419846","DOIUrl":null,"url":null,"abstract":"System test has been the standard measurement to evaluate performance variability of high-performance microprocessors. The question of whether or not many of the lower-cost alternative tests can be used to reduce system test has been studied for many years. This paper utilizes a data-learning approach for correlating three test datasets, structural test, ring oscillator test, and scan flush test, with system test. With the data-learning approach, higher correlation can be found without altering test measurements or test conditions. Rather, the approach utilizes new optimization algorithms to extract more useful information in the three test datasets, with particular success using the structural test data. To further minimize test cost, process monitoring measurements (ring oscillator and scan flush tests) are used to reduce the need for high-frequency structural test. We demonstrate our methodology on a recent high-performance microprocessor design.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Correlating system test fmax with structural test fmax and process monitoring measurements\",\"authors\":\"Janine Chen, Jing Zeng, Li-C. Wang, Michael Mateja\",\"doi\":\"10.1109/ASPDAC.2010.5419846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"System test has been the standard measurement to evaluate performance variability of high-performance microprocessors. The question of whether or not many of the lower-cost alternative tests can be used to reduce system test has been studied for many years. This paper utilizes a data-learning approach for correlating three test datasets, structural test, ring oscillator test, and scan flush test, with system test. With the data-learning approach, higher correlation can be found without altering test measurements or test conditions. Rather, the approach utilizes new optimization algorithms to extract more useful information in the three test datasets, with particular success using the structural test data. To further minimize test cost, process monitoring measurements (ring oscillator and scan flush tests) are used to reduce the need for high-frequency structural test. We demonstrate our methodology on a recent high-performance microprocessor design.\",\"PeriodicalId\":152569,\"journal\":{\"name\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2010.5419846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2010.5419846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

系统测试已成为评价高性能微处理器性能可变性的标准测量方法。是否可以使用许多低成本的替代测试来减少系统测试的问题已经研究了很多年。本文利用数据学习方法将结构测试、环振测试和扫描刷新测试三个测试数据集与系统测试相关联。使用数据学习方法,可以在不改变测试测量或测试条件的情况下发现更高的相关性。相反,该方法利用新的优化算法从三个测试数据集中提取更多有用的信息,特别是在结构测试数据上取得了特别的成功。为了进一步降低测试成本,使用过程监控测量(环形振荡器和扫描冲洗测试)来减少对高频结构测试的需求。我们在最近的高性能微处理器设计中展示了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Correlating system test fmax with structural test fmax and process monitoring measurements
System test has been the standard measurement to evaluate performance variability of high-performance microprocessors. The question of whether or not many of the lower-cost alternative tests can be used to reduce system test has been studied for many years. This paper utilizes a data-learning approach for correlating three test datasets, structural test, ring oscillator test, and scan flush test, with system test. With the data-learning approach, higher correlation can be found without altering test measurements or test conditions. Rather, the approach utilizes new optimization algorithms to extract more useful information in the three test datasets, with particular success using the structural test data. To further minimize test cost, process monitoring measurements (ring oscillator and scan flush tests) are used to reduce the need for high-frequency structural test. We demonstrate our methodology on a recent high-performance microprocessor design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Platform modeling for exploration and synthesis Application-specific 3D Network-on-Chip design using simulated allocation Rule-based optimization of reversible circuits An extension of the generalized Hamiltonian method to S-parameter descriptor systems Adaptive power management for real-time event streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1