使用动态电压缩放最小化优先级约束应用的能耗

Young Choon Lee, Albert Y. Zomaya
{"title":"使用动态电压缩放最小化优先级约束应用的能耗","authors":"Young Choon Lee, Albert Y. Zomaya","doi":"10.1109/CCGRID.2009.16","DOIUrl":null,"url":null,"abstract":"Jobs on high-performance computing systems are deployed mostly with the sole goal of minimizing completion times. This performance demand has been satisfied without paying much attention to power/energy consumption. Consequently, that has become a major concern in high-performance computing systems. In this paper, we address the problem of scheduling precedence-constrained parallel applications on such systems—specifically with heterogeneous resources—accounting for both application completion time and energy consumption. Our scheduling algorithm adopts dynamic voltage scaling (DVS) to minimize energy consumption. DVS can be used with a number of recent commodity processors that are enabled to operate in different voltage supply levels at the expense of sacrificing clock frequencies. In the context of scheduling, this multiple voltage facility implies that there is a trade-off between the quality of schedules and energy consumption. Our algorithm effectively balances these two performance goals using a novel objective function, which takes into account both goals; this claim is verified by the results obtained from our extensive comparative evaluation study.","PeriodicalId":118263,"journal":{"name":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"172","resultStr":"{\"title\":\"Minimizing Energy Consumption for Precedence-Constrained Applications Using Dynamic Voltage Scaling\",\"authors\":\"Young Choon Lee, Albert Y. Zomaya\",\"doi\":\"10.1109/CCGRID.2009.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Jobs on high-performance computing systems are deployed mostly with the sole goal of minimizing completion times. This performance demand has been satisfied without paying much attention to power/energy consumption. Consequently, that has become a major concern in high-performance computing systems. In this paper, we address the problem of scheduling precedence-constrained parallel applications on such systems—specifically with heterogeneous resources—accounting for both application completion time and energy consumption. Our scheduling algorithm adopts dynamic voltage scaling (DVS) to minimize energy consumption. DVS can be used with a number of recent commodity processors that are enabled to operate in different voltage supply levels at the expense of sacrificing clock frequencies. In the context of scheduling, this multiple voltage facility implies that there is a trade-off between the quality of schedules and energy consumption. Our algorithm effectively balances these two performance goals using a novel objective function, which takes into account both goals; this claim is verified by the results obtained from our extensive comparative evaluation study.\",\"PeriodicalId\":118263,\"journal\":{\"name\":\"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"172\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2009.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2009.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 172

摘要

部署在高性能计算系统上的作业的唯一目标是最小化完成时间。这种性能需求已经得到了满足,而无需过多关注功率/能源消耗。因此,这已成为高性能计算系统的主要关注点。在本文中,我们解决了调度优先级受限的并行应用程序在这样的系统上的问题-特别是异构资源-考虑应用程序完成时间和能量消耗。我们的调度算法采用动态电压缩放(DVS)来最小化能耗。DVS可以与许多最近的商品处理器一起使用,这些处理器可以在不同的电压供应水平下工作,但代价是牺牲时钟频率。在调度的上下文中,这种多电压设施意味着在调度的质量和能源消耗之间存在权衡。我们的算法使用一个新的目标函数有效地平衡了这两个性能目标,该目标函数同时考虑了这两个目标;这一说法得到了我们广泛的比较评估研究结果的证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minimizing Energy Consumption for Precedence-Constrained Applications Using Dynamic Voltage Scaling
Jobs on high-performance computing systems are deployed mostly with the sole goal of minimizing completion times. This performance demand has been satisfied without paying much attention to power/energy consumption. Consequently, that has become a major concern in high-performance computing systems. In this paper, we address the problem of scheduling precedence-constrained parallel applications on such systems—specifically with heterogeneous resources—accounting for both application completion time and energy consumption. Our scheduling algorithm adopts dynamic voltage scaling (DVS) to minimize energy consumption. DVS can be used with a number of recent commodity processors that are enabled to operate in different voltage supply levels at the expense of sacrificing clock frequencies. In the context of scheduling, this multiple voltage facility implies that there is a trade-off between the quality of schedules and energy consumption. Our algorithm effectively balances these two performance goals using a novel objective function, which takes into account both goals; this claim is verified by the results obtained from our extensive comparative evaluation study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Visualization Scalability through Time Intervals and Hierarchical Organization of Monitoring Data Collusion Detection for Grid Computing Resource Information Aggregation in Hierarchical Grid Networks Distributed Indexing for Resource Discovery in P2P Networks Challenges and Opportunities on Parallel/Distributed Programming for Large-scale: From Multi-core to Clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1