{"title":"光伏/热混合集热器的数值模拟","authors":"M. Hajji, S. E. Naimi, B. Hajji, M. E. Hafyani","doi":"10.1109/ICM.2014.7071829","DOIUrl":null,"url":null,"abstract":"Currently, the conventional photo-voltaic (PV) systems suffer from the low electrical efficiency due to the operating temperature increase. Indeed, the photo-voltaic module only converts a small part of the absorbed radiation into electricity, with a greater part into heat, increasing its temperature and decreasing its electrical efficiency. The hybrid photo-voltaic/thermal (PV/T) technology offers opportunities that combine a simultaneous conversion of solar radiation into electricity and heat. These devices consist of PV modules and heat extraction units mounted together, by which a circulating fluid of lower temperature than that of PV modules which is heated by cooling them. In this paper, a numerical model of a hybrid photo-voltaic/thermal (PV/T) is being developed. This model is based on the energy balance equations and allows finding the temperature profile across the different layers of the PV/T collector. The electrical performance of the PV/T system is compared to the photo-voltaic panel (PV), and it is found to be higher than the panel PV module. The effect of the water mass flow rate m on the electrical performances of the PV/T is also studied in this work.","PeriodicalId":107354,"journal":{"name":"2014 26th International Conference on Microelectronics (ICM)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A numerical modeling of hybrid photovoltaic/thermal(PV/T)collector\",\"authors\":\"M. Hajji, S. E. Naimi, B. Hajji, M. E. Hafyani\",\"doi\":\"10.1109/ICM.2014.7071829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, the conventional photo-voltaic (PV) systems suffer from the low electrical efficiency due to the operating temperature increase. Indeed, the photo-voltaic module only converts a small part of the absorbed radiation into electricity, with a greater part into heat, increasing its temperature and decreasing its electrical efficiency. The hybrid photo-voltaic/thermal (PV/T) technology offers opportunities that combine a simultaneous conversion of solar radiation into electricity and heat. These devices consist of PV modules and heat extraction units mounted together, by which a circulating fluid of lower temperature than that of PV modules which is heated by cooling them. In this paper, a numerical model of a hybrid photo-voltaic/thermal (PV/T) is being developed. This model is based on the energy balance equations and allows finding the temperature profile across the different layers of the PV/T collector. The electrical performance of the PV/T system is compared to the photo-voltaic panel (PV), and it is found to be higher than the panel PV module. The effect of the water mass flow rate m on the electrical performances of the PV/T is also studied in this work.\",\"PeriodicalId\":107354,\"journal\":{\"name\":\"2014 26th International Conference on Microelectronics (ICM)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 26th International Conference on Microelectronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM.2014.7071829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 26th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2014.7071829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A numerical modeling of hybrid photovoltaic/thermal(PV/T)collector
Currently, the conventional photo-voltaic (PV) systems suffer from the low electrical efficiency due to the operating temperature increase. Indeed, the photo-voltaic module only converts a small part of the absorbed radiation into electricity, with a greater part into heat, increasing its temperature and decreasing its electrical efficiency. The hybrid photo-voltaic/thermal (PV/T) technology offers opportunities that combine a simultaneous conversion of solar radiation into electricity and heat. These devices consist of PV modules and heat extraction units mounted together, by which a circulating fluid of lower temperature than that of PV modules which is heated by cooling them. In this paper, a numerical model of a hybrid photo-voltaic/thermal (PV/T) is being developed. This model is based on the energy balance equations and allows finding the temperature profile across the different layers of the PV/T collector. The electrical performance of the PV/T system is compared to the photo-voltaic panel (PV), and it is found to be higher than the panel PV module. The effect of the water mass flow rate m on the electrical performances of the PV/T is also studied in this work.