截断锥体硅纳米孔在电解质溶液中的电学特性

Qi Chen, Yifan Wang, Hualv Zhang, Zewen Liu
{"title":"截断锥体硅纳米孔在电解质溶液中的电学特性","authors":"Qi Chen, Yifan Wang, Hualv Zhang, Zewen Liu","doi":"10.1109/NANO.2018.8626400","DOIUrl":null,"url":null,"abstract":"In this paper, electrical characteristics of truncated-pyramidal silicon nanopores under various electrolyte concentrations is investigated. The current-voltage (I-V) characteristic of the silicon nanopore differs from that of other asymmetric nanopore, due to the silicon/electrolyte interface property and the pyramidal pore shape. Low frequency 1/f noise in the testing system is measured. In diluted electrolyte solutions, non-ohmic behaviors are found in the I-V curves, and the nonlinearity increases with the decreasing of the electrolyte concentration. I-V characteristics of small nanopores are more nonlinear than the large ones, due to the enhanced influence of the electrical double layer (EDL) in small nanopores immersed in the electrolyte solution. Furthermore, the ionic current rectification (ICR) property in the nanopore with its pore mouth modified by SEM-induced deposition of hydrocarbon compounds is found. The shape modification induced by the hydrocarbons is modeled and analyzed.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical characterization of truncated-pyramidal silicon nanopores in electrolyte solution\",\"authors\":\"Qi Chen, Yifan Wang, Hualv Zhang, Zewen Liu\",\"doi\":\"10.1109/NANO.2018.8626400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, electrical characteristics of truncated-pyramidal silicon nanopores under various electrolyte concentrations is investigated. The current-voltage (I-V) characteristic of the silicon nanopore differs from that of other asymmetric nanopore, due to the silicon/electrolyte interface property and the pyramidal pore shape. Low frequency 1/f noise in the testing system is measured. In diluted electrolyte solutions, non-ohmic behaviors are found in the I-V curves, and the nonlinearity increases with the decreasing of the electrolyte concentration. I-V characteristics of small nanopores are more nonlinear than the large ones, due to the enhanced influence of the electrical double layer (EDL) in small nanopores immersed in the electrolyte solution. Furthermore, the ionic current rectification (ICR) property in the nanopore with its pore mouth modified by SEM-induced deposition of hydrocarbon compounds is found. The shape modification induced by the hydrocarbons is modeled and analyzed.\",\"PeriodicalId\":425521,\"journal\":{\"name\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2018.8626400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了不同电解质浓度下截尖锥体硅纳米孔的电特性。硅纳米孔的电流-电压(I-V)特性不同于其他非对称纳米孔,这是由硅/电解质界面特性和锥体孔形状决定的。对测试系统中的低频1/f噪声进行了测量。在稀释电解质溶液中,I-V曲线存在非欧姆行为,且非线性随电解质浓度的降低而增加。小纳米孔的I-V特性比大纳米孔更非线性,这是由于小纳米孔中电双层(EDL)在电解质溶液中的影响增强。此外,通过sem诱导沉积烃类化合物修饰的纳米孔口具有离子电流整流(ICR)特性。对烃类引起的形状变化进行了建模和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrical characterization of truncated-pyramidal silicon nanopores in electrolyte solution
In this paper, electrical characteristics of truncated-pyramidal silicon nanopores under various electrolyte concentrations is investigated. The current-voltage (I-V) characteristic of the silicon nanopore differs from that of other asymmetric nanopore, due to the silicon/electrolyte interface property and the pyramidal pore shape. Low frequency 1/f noise in the testing system is measured. In diluted electrolyte solutions, non-ohmic behaviors are found in the I-V curves, and the nonlinearity increases with the decreasing of the electrolyte concentration. I-V characteristics of small nanopores are more nonlinear than the large ones, due to the enhanced influence of the electrical double layer (EDL) in small nanopores immersed in the electrolyte solution. Furthermore, the ionic current rectification (ICR) property in the nanopore with its pore mouth modified by SEM-induced deposition of hydrocarbon compounds is found. The shape modification induced by the hydrocarbons is modeled and analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monolithic Integration of III-V on Si Applied to Lasing Micro-Cavities: Insights from STEM and EDX Characterisation of Electroless Deposited Cobalt by Hard and Soft X-ray Photoemission Spectroscopy Multiscale simulation of nanostructured devices Modeling of a Stacked Gated Nanofluidic Channel Metamaterial-Based Label-Free Chemical Sensors for the Detection of Volatile Organic Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1