B. Rethfeld, S. Linden, L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, T. Baumert
{"title":"激光辐照绝缘体中的电子产生:理论描述及其应用","authors":"B. Rethfeld, S. Linden, L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, T. Baumert","doi":"10.1117/12.784630","DOIUrl":null,"url":null,"abstract":"Transparent solids may absorb energy from a laser beam of sufficient high intensity. Several models are under consideration to describe the evolution of the free-electron density. Some of these models keep track of the energy distribution of the electrons. In this work we compare different models and give rules to estimate which one is applicable. We present the inclusion of a term in the multiple rate equation approach, recently introduced, describing fast recombination processes to exciton states. Moreover, we present experimental results with temporally asymmetric femtosecond laser pulses, impinging on a surface of fused silica. We found different thresholds for surface material modification with respect to an asymetric pulse and its time reversed counterpart. This difference is due to a different time-and-intensity dependence of the main ionization processes, which can be controlled with help of femtosecond shaped laser pulses.","PeriodicalId":249315,"journal":{"name":"High-Power Laser Ablation","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electron generation in laser-irradiated insulators: theoretical descriptions and their application\",\"authors\":\"B. Rethfeld, S. Linden, L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, T. Baumert\",\"doi\":\"10.1117/12.784630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transparent solids may absorb energy from a laser beam of sufficient high intensity. Several models are under consideration to describe the evolution of the free-electron density. Some of these models keep track of the energy distribution of the electrons. In this work we compare different models and give rules to estimate which one is applicable. We present the inclusion of a term in the multiple rate equation approach, recently introduced, describing fast recombination processes to exciton states. Moreover, we present experimental results with temporally asymmetric femtosecond laser pulses, impinging on a surface of fused silica. We found different thresholds for surface material modification with respect to an asymetric pulse and its time reversed counterpart. This difference is due to a different time-and-intensity dependence of the main ionization processes, which can be controlled with help of femtosecond shaped laser pulses.\",\"PeriodicalId\":249315,\"journal\":{\"name\":\"High-Power Laser Ablation\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Power Laser Ablation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.784630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Power Laser Ablation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.784630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electron generation in laser-irradiated insulators: theoretical descriptions and their application
Transparent solids may absorb energy from a laser beam of sufficient high intensity. Several models are under consideration to describe the evolution of the free-electron density. Some of these models keep track of the energy distribution of the electrons. In this work we compare different models and give rules to estimate which one is applicable. We present the inclusion of a term in the multiple rate equation approach, recently introduced, describing fast recombination processes to exciton states. Moreover, we present experimental results with temporally asymmetric femtosecond laser pulses, impinging on a surface of fused silica. We found different thresholds for surface material modification with respect to an asymetric pulse and its time reversed counterpart. This difference is due to a different time-and-intensity dependence of the main ionization processes, which can be controlled with help of femtosecond shaped laser pulses.