肿瘤学中的放射组学——从医学图像中揭示肿瘤表型:简短介绍

M. Pavic, J. V. van Timmeren
{"title":"肿瘤学中的放射组学——从医学图像中揭示肿瘤表型:简短介绍","authors":"M. Pavic, J. V. van Timmeren","doi":"10.5166/jroi.11.1.2","DOIUrl":null,"url":null,"abstract":"Radiomics is a promising method to quantify and describe the tumor phenotype on medical images. High numbers of image features are extracted from medical images and can be used within a clinical decision support system by integrating this data with clinical and pathological variables. Herein, we give a short introduction into this image analysis method and present an overview on the workflow.","PeriodicalId":426862,"journal":{"name":"Journal of Radiation Oncology Informatics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiomics in oncology - uncovering tumor phenotype from medical images: a short introduction\",\"authors\":\"M. Pavic, J. V. van Timmeren\",\"doi\":\"10.5166/jroi.11.1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radiomics is a promising method to quantify and describe the tumor phenotype on medical images. High numbers of image features are extracted from medical images and can be used within a clinical decision support system by integrating this data with clinical and pathological variables. Herein, we give a short introduction into this image analysis method and present an overview on the workflow.\",\"PeriodicalId\":426862,\"journal\":{\"name\":\"Journal of Radiation Oncology Informatics\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiation Oncology Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5166/jroi.11.1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Oncology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5166/jroi.11.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

放射组学是一种很有前途的方法来量化和描述医学图像上的肿瘤表型。从医学图像中提取了大量的图像特征,通过将这些数据与临床和病理变量相结合,可以在临床决策支持系统中使用。本文简要介绍了这种图像分析方法,并对其工作流程进行了概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radiomics in oncology - uncovering tumor phenotype from medical images: a short introduction
Radiomics is a promising method to quantify and describe the tumor phenotype on medical images. High numbers of image features are extracted from medical images and can be used within a clinical decision support system by integrating this data with clinical and pathological variables. Herein, we give a short introduction into this image analysis method and present an overview on the workflow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Patient self-reported follow-up for radiation oncology patients during COVID-19: feasibility and patient-clinician agreement Multilayer Perceptron Analysis of Radiomics to Predict Local Recurrence of Lung Cancer After Radiotherapy Data-driven shared decision-making: a paradigm shift How to PROceed? Reviewing obstacles and perspectives in patient-centered digital care in radiation oncology Procedural Creation of Medical Reports with Hierarchical Information Processing in Radiation Oncology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1