基于IPSO-RBFNN的铂电阻传感器非线性辨识新方法

Shaoyi Xu, Wei Li, Ai-hua Hu
{"title":"基于IPSO-RBFNN的铂电阻传感器非线性辨识新方法","authors":"Shaoyi Xu, Wei Li, Ai-hua Hu","doi":"10.1109/CSAE.2011.5953217","DOIUrl":null,"url":null,"abstract":"A new nonlinear identification method of the platinum resistance sensor based on radial basis function neural network using a improved particle swarm optimization algorithm is proposed to settle its nonlinear problem. The particle swarm optimization algorithm is improved by introducing the shrinkage factor and the particle variation factor. The function of the particle fitness is achieved based on the distance between the actual neural network output values and the expected output values. Decode the global optimum value in the swarm searching space as the initial value of network parameters. The simulation shows that the new nonlinear identification has better nonlinear identification accuracy and stability. It is proved that the method is effective and feasible.","PeriodicalId":138215,"journal":{"name":"2011 IEEE International Conference on Computer Science and Automation Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New nonlinear identification method of platinum resistance sensor based on IPSO-RBFNN\",\"authors\":\"Shaoyi Xu, Wei Li, Ai-hua Hu\",\"doi\":\"10.1109/CSAE.2011.5953217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new nonlinear identification method of the platinum resistance sensor based on radial basis function neural network using a improved particle swarm optimization algorithm is proposed to settle its nonlinear problem. The particle swarm optimization algorithm is improved by introducing the shrinkage factor and the particle variation factor. The function of the particle fitness is achieved based on the distance between the actual neural network output values and the expected output values. Decode the global optimum value in the swarm searching space as the initial value of network parameters. The simulation shows that the new nonlinear identification has better nonlinear identification accuracy and stability. It is proved that the method is effective and feasible.\",\"PeriodicalId\":138215,\"journal\":{\"name\":\"2011 IEEE International Conference on Computer Science and Automation Engineering\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Computer Science and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSAE.2011.5953217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAE.2011.5953217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对铂电阻传感器的非线性辨识问题,提出了一种基于径向基函数神经网络的改进粒子群算法。通过引入收缩因子和粒子变异因子对粒子群优化算法进行了改进。粒子适应度函数是根据神经网络实际输出值与期望输出值之间的距离来实现的。将群搜索空间中的全局最优值解码为网络参数的初始值。仿真结果表明,新的非线性辨识方法具有较好的非线性辨识精度和稳定性。实践证明,该方法是有效可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New nonlinear identification method of platinum resistance sensor based on IPSO-RBFNN
A new nonlinear identification method of the platinum resistance sensor based on radial basis function neural network using a improved particle swarm optimization algorithm is proposed to settle its nonlinear problem. The particle swarm optimization algorithm is improved by introducing the shrinkage factor and the particle variation factor. The function of the particle fitness is achieved based on the distance between the actual neural network output values and the expected output values. Decode the global optimum value in the swarm searching space as the initial value of network parameters. The simulation shows that the new nonlinear identification has better nonlinear identification accuracy and stability. It is proved that the method is effective and feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual group identification method of technical competitors using LinLog graph clustering algorithm Overview of 3D textile dynamic simulation research Monotonically decreasing eigenvalue for edge-sharpening diffusion Visual Tracking with adaptive layered-optimizing particles in Multifeature Particle Filtering Framework The fast Viterbi algorithm caching Profile Hidden Markov Models on graphic processing units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1