{"title":"复合图像的轻量级语义分割","authors":"Geonho Cha, Hwiyeon Yoo, Donghoon Lee, Songhwai Oh","doi":"10.1109/MFI.2017.8170444","DOIUrl":null,"url":null,"abstract":"The eye structure of insects, which is called a compound eye, has interesting advantages. It has a large field of view, low aberrations, compact size, short image processing time, and an infinite depth of field. If we can design a compound eye camera which mimics the compound eye structure of insects, compound images with these interesting advantages can be obtained. In this paper, we consider the design of a compound camera prototype and low complexity semantic segmentation scheme for compound images. The prototype has a hemisphere shape and consists of several synchronized single-lens reflex camera modules. Images captured from camera modules are mapped to compound images using multi-view geometry to emulate a compound eye. In this way, we can simulate various configurations of compound eye structures, which is useful for developing high-level applications. After that, a low complexity semantic segmentation scheme for compound images based on a convolutional neural network is proposed. The experimental result shows that compound images are more suitable for semantic segmentation than typical RGB images.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Light-weight semantic segmentation for compound images\",\"authors\":\"Geonho Cha, Hwiyeon Yoo, Donghoon Lee, Songhwai Oh\",\"doi\":\"10.1109/MFI.2017.8170444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The eye structure of insects, which is called a compound eye, has interesting advantages. It has a large field of view, low aberrations, compact size, short image processing time, and an infinite depth of field. If we can design a compound eye camera which mimics the compound eye structure of insects, compound images with these interesting advantages can be obtained. In this paper, we consider the design of a compound camera prototype and low complexity semantic segmentation scheme for compound images. The prototype has a hemisphere shape and consists of several synchronized single-lens reflex camera modules. Images captured from camera modules are mapped to compound images using multi-view geometry to emulate a compound eye. In this way, we can simulate various configurations of compound eye structures, which is useful for developing high-level applications. After that, a low complexity semantic segmentation scheme for compound images based on a convolutional neural network is proposed. The experimental result shows that compound images are more suitable for semantic segmentation than typical RGB images.\",\"PeriodicalId\":402371,\"journal\":{\"name\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2017.8170444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Light-weight semantic segmentation for compound images
The eye structure of insects, which is called a compound eye, has interesting advantages. It has a large field of view, low aberrations, compact size, short image processing time, and an infinite depth of field. If we can design a compound eye camera which mimics the compound eye structure of insects, compound images with these interesting advantages can be obtained. In this paper, we consider the design of a compound camera prototype and low complexity semantic segmentation scheme for compound images. The prototype has a hemisphere shape and consists of several synchronized single-lens reflex camera modules. Images captured from camera modules are mapped to compound images using multi-view geometry to emulate a compound eye. In this way, we can simulate various configurations of compound eye structures, which is useful for developing high-level applications. After that, a low complexity semantic segmentation scheme for compound images based on a convolutional neural network is proposed. The experimental result shows that compound images are more suitable for semantic segmentation than typical RGB images.