带多参数励磁控制器的同步发电机非线性模型的稳定区

A. Chekhonadskikh
{"title":"带多参数励磁控制器的同步发电机非线性模型的稳定区","authors":"A. Chekhonadskikh","doi":"10.17212/1727-2769-2020-4-51-61","DOIUrl":null,"url":null,"abstract":"We take as the research object the well-known system of nonlinear differential and functional equations that describes a synchronous generator. PIDD2-control was carried out through the excitation block. Effective values of the steady state in relative units and the preliminary settings of suboptimal controllers were obtained earlier using a linearized model. Disturbing surges (spikes and slump) in bus voltages were modeled as line impedance changes. The system stabilization was studied at various surges values and controller parameters by means series of numerical experiments; the calculations were carried out by the methods of Runge-Kutta and Dorman-Prince. The main attention was paid to various transient types, both stabilizing and diverging, as well as a configuration of the stability region boundary in the controller parameters of and a surge magnitude; the paper presents the results for the proportional control parameter are as the most informative. We've identified five types of transients and several important features of the model's behavior near the stabilization area boundary. Thus, the nonlinear model turned out to be unstable to small and stable to bigger perturbations in the unstable area of its linearization. The steady-state oscillations at the boundary have a lower amplitude with increasing of an initial perturbation, etc.","PeriodicalId":448354,"journal":{"name":"Proceedings of the Russian higher school Academy of sciences","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability area of a synchronous generator nonlinear model with multiparametric excitation controller\",\"authors\":\"A. Chekhonadskikh\",\"doi\":\"10.17212/1727-2769-2020-4-51-61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We take as the research object the well-known system of nonlinear differential and functional equations that describes a synchronous generator. PIDD2-control was carried out through the excitation block. Effective values of the steady state in relative units and the preliminary settings of suboptimal controllers were obtained earlier using a linearized model. Disturbing surges (spikes and slump) in bus voltages were modeled as line impedance changes. The system stabilization was studied at various surges values and controller parameters by means series of numerical experiments; the calculations were carried out by the methods of Runge-Kutta and Dorman-Prince. The main attention was paid to various transient types, both stabilizing and diverging, as well as a configuration of the stability region boundary in the controller parameters of and a surge magnitude; the paper presents the results for the proportional control parameter are as the most informative. We've identified five types of transients and several important features of the model's behavior near the stabilization area boundary. Thus, the nonlinear model turned out to be unstable to small and stable to bigger perturbations in the unstable area of its linearization. The steady-state oscillations at the boundary have a lower amplitude with increasing of an initial perturbation, etc.\",\"PeriodicalId\":448354,\"journal\":{\"name\":\"Proceedings of the Russian higher school Academy of sciences\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Russian higher school Academy of sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17212/1727-2769-2020-4-51-61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Russian higher school Academy of sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17212/1727-2769-2020-4-51-61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们以描述同步发电机的众所周知的非线性微分和泛函方程组为研究对象。pidd2控制通过励磁块进行。利用线性化模型得到了相对单元的稳态有效值和次优控制器的初始设置。母线电压的干扰浪涌(尖峰和暴跌)被建模为线路阻抗的变化。通过一系列数值实验研究了系统在不同浪涌值和控制器参数下的稳定性;采用龙格-库塔法和多曼-普林斯法进行计算。重点研究了稳定和发散两种暂态类型,以及稳定区域边界在控制器参数和浪涌幅值中的配置;本文给出了比例控制参数最具信息量的结果。我们确定了稳定区边界附近的五种瞬态和模型行为的几个重要特征。因此,非线性模型在其线性化的不稳定区域对小的扰动是不稳定的,对较大的扰动是稳定的。边界处的稳态振荡振幅随初始扰动的增大而减小,等等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stability area of a synchronous generator nonlinear model with multiparametric excitation controller
We take as the research object the well-known system of nonlinear differential and functional equations that describes a synchronous generator. PIDD2-control was carried out through the excitation block. Effective values of the steady state in relative units and the preliminary settings of suboptimal controllers were obtained earlier using a linearized model. Disturbing surges (spikes and slump) in bus voltages were modeled as line impedance changes. The system stabilization was studied at various surges values and controller parameters by means series of numerical experiments; the calculations were carried out by the methods of Runge-Kutta and Dorman-Prince. The main attention was paid to various transient types, both stabilizing and diverging, as well as a configuration of the stability region boundary in the controller parameters of and a surge magnitude; the paper presents the results for the proportional control parameter are as the most informative. We've identified five types of transients and several important features of the model's behavior near the stabilization area boundary. Thus, the nonlinear model turned out to be unstable to small and stable to bigger perturbations in the unstable area of its linearization. The steady-state oscillations at the boundary have a lower amplitude with increasing of an initial perturbation, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation of effective electric vehicle power plant taking into account load cycles of motion Physics of deformation and fracture at the interface of amorphous and crystalline metal alloys Highly dynamic "Dead time" compensation in electric drives based on signal adaptation A mechanical model of fold formation on the plasma membrane Study of the protection algorithms in distributed generation systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1