通过机器学习预测生产时间,以调度PPC系统中的增材制造订单

Wjatscheslav Baumung, V. Fomin
{"title":"通过机器学习预测生产时间,以调度PPC系统中的增材制造订单","authors":"Wjatscheslav Baumung, V. Fomin","doi":"10.1109/ICIASE45644.2019.9074152","DOIUrl":null,"url":null,"abstract":"Additive manufacturing (AM) is a promising manufacturing method for many industrial sectors. For this application, industrial requirements such as high production volumes and coordinated implementation must be taken into account. These tasks of the internal handling of production facilities are carried out by the Production Planning and Control (PPC) information system. A key factor in the planning and scheduling is the exact calculation of manufacturing times. For this purpose we investigate the use of Machine Learning (ML) for the prediction of manufacturing times of AM facilities.","PeriodicalId":206741,"journal":{"name":"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predicting production times through machine learning for scheduling additive manufacturing orders in a PPC system\",\"authors\":\"Wjatscheslav Baumung, V. Fomin\",\"doi\":\"10.1109/ICIASE45644.2019.9074152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive manufacturing (AM) is a promising manufacturing method for many industrial sectors. For this application, industrial requirements such as high production volumes and coordinated implementation must be taken into account. These tasks of the internal handling of production facilities are carried out by the Production Planning and Control (PPC) information system. A key factor in the planning and scheduling is the exact calculation of manufacturing times. For this purpose we investigate the use of Machine Learning (ML) for the prediction of manufacturing times of AM facilities.\",\"PeriodicalId\":206741,\"journal\":{\"name\":\"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIASE45644.2019.9074152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIASE45644.2019.9074152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

增材制造(AM)在许多工业领域是一种很有前途的制造方法。对于该应用程序,必须考虑诸如高产量和协调实施等工业要求。这些内部处理生产设施的任务是由生产计划和控制(PPC)信息系统执行的。计划和调度的一个关键因素是制造时间的精确计算。为此,我们研究了使用机器学习(ML)来预测AM设施的制造时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting production times through machine learning for scheduling additive manufacturing orders in a PPC system
Additive manufacturing (AM) is a promising manufacturing method for many industrial sectors. For this application, industrial requirements such as high production volumes and coordinated implementation must be taken into account. These tasks of the internal handling of production facilities are carried out by the Production Planning and Control (PPC) information system. A key factor in the planning and scheduling is the exact calculation of manufacturing times. For this purpose we investigate the use of Machine Learning (ML) for the prediction of manufacturing times of AM facilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy Harvesting Path Planning Strategy on the Quality of Information for Wireless Sensor Networks PHGWO: A Duty Cycle Design Method for High-density Wireless Sensor Networks Obstacle Avoidance Path Planning Based on Target Heuristic and Repair Genetic Algorithms Research on Thermal Error of CNC Machine Tool Based on DBSCAN Clustering and BP Neural Network Algorithm Implementation of Remote Control a Mower Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1