节能建筑的电池管理与应用

Tianshu Wei, Taeyoung Kim, Sangyoung Park, Qidong Zhu, S. Tan, N. Chang, S. Ula, Mehdi Maasoumy
{"title":"节能建筑的电池管理与应用","authors":"Tianshu Wei, Taeyoung Kim, Sangyoung Park, Qidong Zhu, S. Tan, N. Chang, S. Ula, Mehdi Maasoumy","doi":"10.1145/2593069.2596670","DOIUrl":null,"url":null,"abstract":"As the building stock consumes 40% of the U.S. primary energy consumption, it is critically important to improve building energy efficiency. This involves reducing the total energy consumption of buildings, reducing the peak energy demand, and leveraging renewable energy sources, etc. To achieve such goals, hybrid energy supply has becoming popular, where multiple energy sources such as grid electricity, on-site fuel cell generators, solar, wind, and battery storage are scheduled together to improve energy efficiency. In this work, we focus on the application and management of battery storage for energy-efficient buildings. We will first introduce a system-level approach to co-schedule the usage of battery storage (in addition to grid electricity) with the control of building HVAC (heating, ventilation, and air conditioning) system, to reduce the total building energy cost, including the electricity consumption charge, the peak demand charge, and the battery cost. Then, in a separate formulation, we will introduce another system-level study to reduce the energy cost of EV charging and other fixed building energy load through the usage of battery storage and solar PV. Finally, we will present an ARM processor based programmable embedded battery management system (BMS), which monitors battery status, controls charging and discharging at the circuit level, and provides battery protection. The system also works with off-the-shelf battery management IC (Texas Instrument BMS sensor IC) from industry. Comparing to conventional BMS, this software module based BMS is a more suitable solution for energy efficient buildings due to its high flexibility, scalability, and reusability. We will introduce an industrial building testbed with battery storage and solar PV at the University of California, Riverside, and present initial field tests and simulation results for above approaches.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Battery management and application for energy-efficient buildings\",\"authors\":\"Tianshu Wei, Taeyoung Kim, Sangyoung Park, Qidong Zhu, S. Tan, N. Chang, S. Ula, Mehdi Maasoumy\",\"doi\":\"10.1145/2593069.2596670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the building stock consumes 40% of the U.S. primary energy consumption, it is critically important to improve building energy efficiency. This involves reducing the total energy consumption of buildings, reducing the peak energy demand, and leveraging renewable energy sources, etc. To achieve such goals, hybrid energy supply has becoming popular, where multiple energy sources such as grid electricity, on-site fuel cell generators, solar, wind, and battery storage are scheduled together to improve energy efficiency. In this work, we focus on the application and management of battery storage for energy-efficient buildings. We will first introduce a system-level approach to co-schedule the usage of battery storage (in addition to grid electricity) with the control of building HVAC (heating, ventilation, and air conditioning) system, to reduce the total building energy cost, including the electricity consumption charge, the peak demand charge, and the battery cost. Then, in a separate formulation, we will introduce another system-level study to reduce the energy cost of EV charging and other fixed building energy load through the usage of battery storage and solar PV. Finally, we will present an ARM processor based programmable embedded battery management system (BMS), which monitors battery status, controls charging and discharging at the circuit level, and provides battery protection. The system also works with off-the-shelf battery management IC (Texas Instrument BMS sensor IC) from industry. Comparing to conventional BMS, this software module based BMS is a more suitable solution for energy efficient buildings due to its high flexibility, scalability, and reusability. We will introduce an industrial building testbed with battery storage and solar PV at the University of California, Riverside, and present initial field tests and simulation results for above approaches.\",\"PeriodicalId\":433816,\"journal\":{\"name\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2593069.2596670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2596670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

由于建筑消耗了美国40%的一次能源消耗,因此提高建筑能源效率至关重要。这包括减少建筑物的总能耗,减少高峰能源需求,以及利用可再生能源等。为了实现这一目标,混合能源供应开始流行,其中多种能源,如电网电力,现场燃料电池发电机,太阳能,风能和电池存储一起安排,以提高能源效率。在本工作中,我们重点研究了节能建筑中电池储能的应用和管理。我们将首先引入一种系统级的方法,将电池储能(除电网电力外)的使用与建筑暖通空调(采暖、通风和空调)系统的控制共同调度,以降低建筑总能源成本,包括电力消耗费用、峰值需求费用和电池成本。然后,在一个单独的公式中,我们将介绍另一个系统层面的研究,通过使用电池存储和太阳能光伏来降低电动汽车充电和其他固定建筑能源负荷的能源成本。最后,我们将介绍一个基于ARM处理器的可编程嵌入式电池管理系统(BMS),该系统可以监控电池状态,控制电路级的充放电,并提供电池保护。该系统还可与业界现成的电池管理IC(德州仪器BMS传感器IC)配合使用。与传统的管理管理系统相比,这种基于软件模块的管理管理系统具有较高的灵活性、可扩展性和可重用性,更适合节能建筑。我们将在加州大学河滨分校(University of California, Riverside)引入一个具有电池存储和太阳能光伏的工业建筑测试平台,并介绍上述方法的初步现场测试和模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Battery management and application for energy-efficient buildings
As the building stock consumes 40% of the U.S. primary energy consumption, it is critically important to improve building energy efficiency. This involves reducing the total energy consumption of buildings, reducing the peak energy demand, and leveraging renewable energy sources, etc. To achieve such goals, hybrid energy supply has becoming popular, where multiple energy sources such as grid electricity, on-site fuel cell generators, solar, wind, and battery storage are scheduled together to improve energy efficiency. In this work, we focus on the application and management of battery storage for energy-efficient buildings. We will first introduce a system-level approach to co-schedule the usage of battery storage (in addition to grid electricity) with the control of building HVAC (heating, ventilation, and air conditioning) system, to reduce the total building energy cost, including the electricity consumption charge, the peak demand charge, and the battery cost. Then, in a separate formulation, we will introduce another system-level study to reduce the energy cost of EV charging and other fixed building energy load through the usage of battery storage and solar PV. Finally, we will present an ARM processor based programmable embedded battery management system (BMS), which monitors battery status, controls charging and discharging at the circuit level, and provides battery protection. The system also works with off-the-shelf battery management IC (Texas Instrument BMS sensor IC) from industry. Comparing to conventional BMS, this software module based BMS is a more suitable solution for energy efficient buildings due to its high flexibility, scalability, and reusability. We will introduce an industrial building testbed with battery storage and solar PV at the University of California, Riverside, and present initial field tests and simulation results for above approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The EDA challenges in the dark silicon era CAP: Communication aware programming Advanced soft-error-rate (SER) estimation with striking-time and multi-cycle effects State-restrict MLC STT-RAM designs for high-reliable high-performance memory system OD3P: On-Demand Page Paired PCM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1