机器人经直肠活检系统在介入计划软件上的初步评价

J. D. V. Garcia, E. Leiss, M. Karkoub, P. Tsiamyrtzis, N. Tsekos, N. Navkar, S. Balakrishnan, J. Abinahed, A. Al-Ansari, Georges Younes, A. Darweesh, Khalid Al-Rumaihi, E. Christoforou
{"title":"机器人经直肠活检系统在介入计划软件上的初步评价","authors":"J. D. V. Garcia, E. Leiss, M. Karkoub, P. Tsiamyrtzis, N. Tsekos, N. Navkar, S. Balakrishnan, J. Abinahed, A. Al-Ansari, Georges Younes, A. Darweesh, Khalid Al-Rumaihi, E. Christoforou","doi":"10.1109/BIBE.2019.00070","DOIUrl":null,"url":null,"abstract":"Prostate biopsy is considered as a definitive way for diagnosing prostate malignancies. Urologists are currently moving towards MR-guided prostate biopsies over conventional transrectal ultrasound-guided biopsies for prostate cancer detection. Recently, robotic systems have started to emerge as an assistance tool for urologists to perform MR-guided prostate biopsies. However, these robotic assistance systems are designed for a specific clinical environment and cannot be adapted to modifications or changes applied to the clinical setting and/or workflow. This work presents the preliminary design of a cable-driven manipulator developed to be used in both MR scanners and MR-ultrasound fusion systems. The proposed manipulator design and functionality are evaluated on a simulated virtual environment. The simulation is created on an in-house developed interventional planning software to evaluate the ergonomics and usability. The results show that urologists can benefit from the proposed design of the manipulator and planning software to accurately perform biopsies of targeted areas in the prostate.","PeriodicalId":318819,"journal":{"name":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Preliminary Evaluation of Robotic Transrectal Biopsy System on an Interventional Planning Software\",\"authors\":\"J. D. V. Garcia, E. Leiss, M. Karkoub, P. Tsiamyrtzis, N. Tsekos, N. Navkar, S. Balakrishnan, J. Abinahed, A. Al-Ansari, Georges Younes, A. Darweesh, Khalid Al-Rumaihi, E. Christoforou\",\"doi\":\"10.1109/BIBE.2019.00070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prostate biopsy is considered as a definitive way for diagnosing prostate malignancies. Urologists are currently moving towards MR-guided prostate biopsies over conventional transrectal ultrasound-guided biopsies for prostate cancer detection. Recently, robotic systems have started to emerge as an assistance tool for urologists to perform MR-guided prostate biopsies. However, these robotic assistance systems are designed for a specific clinical environment and cannot be adapted to modifications or changes applied to the clinical setting and/or workflow. This work presents the preliminary design of a cable-driven manipulator developed to be used in both MR scanners and MR-ultrasound fusion systems. The proposed manipulator design and functionality are evaluated on a simulated virtual environment. The simulation is created on an in-house developed interventional planning software to evaluate the ergonomics and usability. The results show that urologists can benefit from the proposed design of the manipulator and planning software to accurately perform biopsies of targeted areas in the prostate.\",\"PeriodicalId\":318819,\"journal\":{\"name\":\"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2019.00070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2019.00070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

前列腺活检被认为是诊断前列腺恶性肿瘤的明确方法。泌尿科医生目前正在转向核磁共振引导下的前列腺活检,而不是传统的经直肠超声引导下的前列腺癌活检。最近,机器人系统已经开始成为泌尿科医生进行磁共振引导前列腺活检的辅助工具。然而,这些机器人辅助系统是为特定的临床环境设计的,不能适应临床环境和/或工作流程的修改或变化。这项工作提出了一种缆索驱动的机械臂的初步设计,开发用于核磁共振扫描仪和核磁共振超声融合系统。在仿真的虚拟环境中对所提出的机械手设计和功能进行了评估。模拟是在内部开发的介入规划软件上创建的,以评估人体工程学和可用性。结果表明,泌尿科医生可以从所提出的机械手设计和规划软件中受益,以准确地进行前列腺目标区域的活检。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preliminary Evaluation of Robotic Transrectal Biopsy System on an Interventional Planning Software
Prostate biopsy is considered as a definitive way for diagnosing prostate malignancies. Urologists are currently moving towards MR-guided prostate biopsies over conventional transrectal ultrasound-guided biopsies for prostate cancer detection. Recently, robotic systems have started to emerge as an assistance tool for urologists to perform MR-guided prostate biopsies. However, these robotic assistance systems are designed for a specific clinical environment and cannot be adapted to modifications or changes applied to the clinical setting and/or workflow. This work presents the preliminary design of a cable-driven manipulator developed to be used in both MR scanners and MR-ultrasound fusion systems. The proposed manipulator design and functionality are evaluated on a simulated virtual environment. The simulation is created on an in-house developed interventional planning software to evaluate the ergonomics and usability. The results show that urologists can benefit from the proposed design of the manipulator and planning software to accurately perform biopsies of targeted areas in the prostate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability Investigation Using Hydrogen Bonds for Different Mutations and Drug Resistance in Non-Small Cell Lung Cancer Patients A Temporal Convolution Network Solution for EEG Motor Imagery Classification Evaluation of a Serious Game Promoting Nutrition and Food Literacy: Experiment Design and Preliminary Results Towards a Robust and Accurate Screening Tool for Dyslexia with Data Augmentation using GANs Exploring Fibrotic Disease Networks to Identify Common Molecular Mechanisms with IPF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1