基于眉形特征的生物特征识别与性别分类的可行性研究

Yujie Dong, D. Woodard
{"title":"基于眉形特征的生物特征识别与性别分类的可行性研究","authors":"Yujie Dong, D. Woodard","doi":"10.1109/IJCB.2011.6117511","DOIUrl":null,"url":null,"abstract":"A wide variety of applications in forensic, government, and commercial fields require reliable personal identification. However, the recognition performance is severely affected when encountering non-ideal images caused by motion blur, poor contrast, various expressions, or illumination artifacts. In this paper, we investigated the use of shape-based eyebrow features under non-ideal imaging conditions for biometric recognition and gender classification. We extracted various shape-based features from the eyebrow images and compared three different classification methods: Minimum Distance Classifier (MD), Linear Discriminant Analysis Classifier (LDA) and Support Vector Machine Classifier (SVM). The methods were tested on images from two publicly available facial image databases: The Multiple Biometric Grand Challenge (MBGC) database and the Face Recognition Grand Challenge (FRGC) database. Obtained recognition rates of 90% using the MBGC database and 75% using the FRGC database as well as gender classification recognition rates of 96% and 97% for each database respectively, suggests the shape-based eyebrow features maybe be used for biometric recognition and soft biometric classification.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Eyebrow shape-based features for biometric recognition and gender classification: A feasibility study\",\"authors\":\"Yujie Dong, D. Woodard\",\"doi\":\"10.1109/IJCB.2011.6117511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wide variety of applications in forensic, government, and commercial fields require reliable personal identification. However, the recognition performance is severely affected when encountering non-ideal images caused by motion blur, poor contrast, various expressions, or illumination artifacts. In this paper, we investigated the use of shape-based eyebrow features under non-ideal imaging conditions for biometric recognition and gender classification. We extracted various shape-based features from the eyebrow images and compared three different classification methods: Minimum Distance Classifier (MD), Linear Discriminant Analysis Classifier (LDA) and Support Vector Machine Classifier (SVM). The methods were tested on images from two publicly available facial image databases: The Multiple Biometric Grand Challenge (MBGC) database and the Face Recognition Grand Challenge (FRGC) database. Obtained recognition rates of 90% using the MBGC database and 75% using the FRGC database as well as gender classification recognition rates of 96% and 97% for each database respectively, suggests the shape-based eyebrow features maybe be used for biometric recognition and soft biometric classification.\",\"PeriodicalId\":103913,\"journal\":{\"name\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB.2011.6117511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

法医、政府和商业领域的各种应用都需要可靠的个人身份识别。然而,当遇到由运动模糊、对比度差、各种表情或照明伪影引起的非理想图像时,识别性能会受到严重影响。在本文中,我们研究了在非理想成像条件下使用基于形状的眉毛特征进行生物识别和性别分类。我们从眉毛图像中提取各种基于形状的特征,并比较了三种不同的分类方法:最小距离分类器(MD)、线性判别分析分类器(LDA)和支持向量机分类器(SVM)。这些方法在两个公开可用的面部图像数据库中进行了测试:多重生物识别大挑战(MBGC)数据库和面部识别大挑战(FRGC)数据库。MBGC和FRGC的识别率分别为90%和75%,性别分类识别率分别为96%和97%,表明基于形状的眉毛特征可用于生物特征识别和软生物特征分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Eyebrow shape-based features for biometric recognition and gender classification: A feasibility study
A wide variety of applications in forensic, government, and commercial fields require reliable personal identification. However, the recognition performance is severely affected when encountering non-ideal images caused by motion blur, poor contrast, various expressions, or illumination artifacts. In this paper, we investigated the use of shape-based eyebrow features under non-ideal imaging conditions for biometric recognition and gender classification. We extracted various shape-based features from the eyebrow images and compared three different classification methods: Minimum Distance Classifier (MD), Linear Discriminant Analysis Classifier (LDA) and Support Vector Machine Classifier (SVM). The methods were tested on images from two publicly available facial image databases: The Multiple Biometric Grand Challenge (MBGC) database and the Face Recognition Grand Challenge (FRGC) database. Obtained recognition rates of 90% using the MBGC database and 75% using the FRGC database as well as gender classification recognition rates of 96% and 97% for each database respectively, suggests the shape-based eyebrow features maybe be used for biometric recognition and soft biometric classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-resolution face recognition via Simultaneous Discriminant Analysis Fundamental statistics of relatively permanent pigmented or vascular skin marks for criminal and victim identification Biometric recognition of newborns: Identification using palmprints Combination of multiple samples utilizing identification model in biometric systems Face and eye detection on hard datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1