在极紫外光刻膜上生长图案的新型材料

H. Yanagita, Kazuma Yamamoto
{"title":"在极紫外光刻膜上生长图案的新型材料","authors":"H. Yanagita, Kazuma Yamamoto","doi":"10.1117/12.2657969","DOIUrl":null,"url":null,"abstract":"Extreme ultraviolet lithography (EUVL) technology is one of the promising high volume manufacturing processes for devices below 7nm. However, the technology still has several issues for HVM. Especially, RLS (Resolution, LWR, and sensitivity) trade-off remains as one of the obvious problems for resist patterning. In which, resist resolution is one of the challenges to make fine pattern. For fine patterning, High NA EUV is predicted as one of candidate for enabling the future generation of device manufacturing. In this situation, investigation of chemically amplified resist (CAR) is being intensively conducted as one of candidate material for high-NA EUVL. However, CAR has one of key challenge for mask transfer because it is expected that thin resist film thickness is applied to exhibit good lithographic performance. As one of the solutions for this issue, we focused on the novel material which selectively makes a growth of the pattern.","PeriodicalId":212235,"journal":{"name":"Advanced Lithography","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The novel materials for pattern growing on EUV resists\",\"authors\":\"H. Yanagita, Kazuma Yamamoto\",\"doi\":\"10.1117/12.2657969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme ultraviolet lithography (EUVL) technology is one of the promising high volume manufacturing processes for devices below 7nm. However, the technology still has several issues for HVM. Especially, RLS (Resolution, LWR, and sensitivity) trade-off remains as one of the obvious problems for resist patterning. In which, resist resolution is one of the challenges to make fine pattern. For fine patterning, High NA EUV is predicted as one of candidate for enabling the future generation of device manufacturing. In this situation, investigation of chemically amplified resist (CAR) is being intensively conducted as one of candidate material for high-NA EUVL. However, CAR has one of key challenge for mask transfer because it is expected that thin resist film thickness is applied to exhibit good lithographic performance. As one of the solutions for this issue, we focused on the novel material which selectively makes a growth of the pattern.\",\"PeriodicalId\":212235,\"journal\":{\"name\":\"Advanced Lithography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Lithography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2657969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2657969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

极紫外光刻(EUVL)技术是7nm以下器件的有前途的大批量制造工艺之一。然而,HVM技术仍然存在一些问题。特别是,分辨率、LWR和灵敏度之间的权衡仍然是抵抗模式的一个明显问题。其中,抗分辨率是制作精细图案的挑战之一。对于精细图形,高NA EUV被预测为实现下一代器件制造的候选之一。在这种情况下,化学扩增抗蚀剂(CAR)作为高na EUVL的候选材料之一正受到广泛的研究。然而,CAR对掩模转移有一个关键的挑战,因为期望应用薄的抗蚀膜厚度来表现出良好的光刻性能。作为这个问题的解决方案之一,我们专注于有选择地使图案生长的新型材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The novel materials for pattern growing on EUV resists
Extreme ultraviolet lithography (EUVL) technology is one of the promising high volume manufacturing processes for devices below 7nm. However, the technology still has several issues for HVM. Especially, RLS (Resolution, LWR, and sensitivity) trade-off remains as one of the obvious problems for resist patterning. In which, resist resolution is one of the challenges to make fine pattern. For fine patterning, High NA EUV is predicted as one of candidate for enabling the future generation of device manufacturing. In this situation, investigation of chemically amplified resist (CAR) is being intensively conducted as one of candidate material for high-NA EUVL. However, CAR has one of key challenge for mask transfer because it is expected that thin resist film thickness is applied to exhibit good lithographic performance. As one of the solutions for this issue, we focused on the novel material which selectively makes a growth of the pattern.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Considerations in the design of photoacid generators Predicting the critical features of the chemically-amplified resist profile based on machine learning Application of double exposure technique in plasmonic lithography The damage control of sub layer while ion-driven etching with vertical carbon profile implemented Ultra-high carbon fullerene-based spin-on-carbon hardmasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1