基于预测神经网络的语音信号自动分割

M. Zbancioc, S. M. Feraru
{"title":"基于预测神经网络的语音信号自动分割","authors":"M. Zbancioc, S. M. Feraru","doi":"10.1109/ISSCS.2013.6651255","DOIUrl":null,"url":null,"abstract":"The automatic segmentation of the vocal signal precedes the features extraction stages, respectively the emotion recognition/classification. The extraction of the prosodic parameters as fundamental frequency (F0) and formants (F1-F4) cepstral coefficients LPCC and MFCC are made only on the vowel areas. The analysis tools from the SROL corpus are using a hybrid hierarchical system with four segmentation methods based on the autocorrelation function, AMDF method, the cepstral analysis and HPS method. Since the performance of this instrument has not been yet satisfactory, we analyzed other segmentation possibilities in order to obtain the best possible accuracy in segmentation. The predictive neural network used in this paper is in fact a simple perceptron which can approximate with high accuracy the quasi-periodic signals such as the vowels. The consonants have noisy properties and are complicated transition processes. The prediction error for the consonants comparing with the vowels is higher when it is used a sample neural network architecture.","PeriodicalId":260263,"journal":{"name":"International Symposium on Signals, Circuits and Systems ISSCS2013","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The automatic segmentation of the vocal signal using predictive neural network\",\"authors\":\"M. Zbancioc, S. M. Feraru\",\"doi\":\"10.1109/ISSCS.2013.6651255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic segmentation of the vocal signal precedes the features extraction stages, respectively the emotion recognition/classification. The extraction of the prosodic parameters as fundamental frequency (F0) and formants (F1-F4) cepstral coefficients LPCC and MFCC are made only on the vowel areas. The analysis tools from the SROL corpus are using a hybrid hierarchical system with four segmentation methods based on the autocorrelation function, AMDF method, the cepstral analysis and HPS method. Since the performance of this instrument has not been yet satisfactory, we analyzed other segmentation possibilities in order to obtain the best possible accuracy in segmentation. The predictive neural network used in this paper is in fact a simple perceptron which can approximate with high accuracy the quasi-periodic signals such as the vowels. The consonants have noisy properties and are complicated transition processes. The prediction error for the consonants comparing with the vowels is higher when it is used a sample neural network architecture.\",\"PeriodicalId\":260263,\"journal\":{\"name\":\"International Symposium on Signals, Circuits and Systems ISSCS2013\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Signals, Circuits and Systems ISSCS2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCS.2013.6651255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Signals, Circuits and Systems ISSCS2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2013.6651255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

语音信号的自动分割先于特征提取阶段,即情感识别/分类阶段。韵律参数基频(F0)和共振峰(F1-F4)倒谱系数LPCC和MFCC仅在元音区域进行提取。从SROL语料库中提取的分析工具使用了混合层次系统,该系统采用了基于自相关函数、AMDF方法、倒谱分析和HPS方法的四种分割方法。由于该仪器的性能尚不令人满意,我们分析了其他分割可能性,以获得最佳的分割精度。本文所使用的预测神经网络实际上是一种简单的感知器,它可以高精度地逼近元音等准周期信号。辅音有噪声,是复杂的过渡过程。使用样本神经网络结构时,对辅音的预测误差高于元音。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The automatic segmentation of the vocal signal using predictive neural network
The automatic segmentation of the vocal signal precedes the features extraction stages, respectively the emotion recognition/classification. The extraction of the prosodic parameters as fundamental frequency (F0) and formants (F1-F4) cepstral coefficients LPCC and MFCC are made only on the vowel areas. The analysis tools from the SROL corpus are using a hybrid hierarchical system with four segmentation methods based on the autocorrelation function, AMDF method, the cepstral analysis and HPS method. Since the performance of this instrument has not been yet satisfactory, we analyzed other segmentation possibilities in order to obtain the best possible accuracy in segmentation. The predictive neural network used in this paper is in fact a simple perceptron which can approximate with high accuracy the quasi-periodic signals such as the vowels. The consonants have noisy properties and are complicated transition processes. The prediction error for the consonants comparing with the vowels is higher when it is used a sample neural network architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autor index Dynamic time warping for speech recognition with training part to reduce the computation A face recognition system based on a Kinect sensor and Windows Azure cloud technology An efficient GSC VSS-APA beamformer with integrated log-energy based VAD for noise reduction in speech reinforcement systems RNSIC-1 based wind energy conversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1