多压电风扇系统与蒸汽室的集成

H. K. Ma, S. Liao, Y. S. Lee
{"title":"多压电风扇系统与蒸汽室的集成","authors":"H. K. Ma, S. Liao, Y. S. Lee","doi":"10.1109/SEMI-THERM.2017.7896922","DOIUrl":null,"url":null,"abstract":"In this study, a multiple fans system with a piezoelectric actuator (MFPA) was integrated with a vapor chamber. The integrated system was embedded in a micro-computer for its thermal management. The MFPA utilized magnetic repulsive force to transfer power from the piezoelectric actuator to the adjacent passive fans. Models with different fan length, fan pitch and the number of the fans were developed. The thermal performance, vibrational amplitude, and power consumption of different models were investigated. The experiment results showed that the thermal resistance of all the models decreased when the input power increased. Besides, the model with shorter carbon fiber plate length, larger fan pitch and larger fan number had the lower thermal resistance. The model with five fans, 11 mm fan pitch, 40 mm carbon fiber plate and 10 mm Mylar plate had the lowest thermal resistance at 3.14 °C/W under the 12 W input power, while the thermal resistance of natural convection was 4.88 °C/W. The power consumption of the model was merely 0.05 W.","PeriodicalId":442782,"journal":{"name":"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of a multiple piezoelectric fans system with a vapor chamber\",\"authors\":\"H. K. Ma, S. Liao, Y. S. Lee\",\"doi\":\"10.1109/SEMI-THERM.2017.7896922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a multiple fans system with a piezoelectric actuator (MFPA) was integrated with a vapor chamber. The integrated system was embedded in a micro-computer for its thermal management. The MFPA utilized magnetic repulsive force to transfer power from the piezoelectric actuator to the adjacent passive fans. Models with different fan length, fan pitch and the number of the fans were developed. The thermal performance, vibrational amplitude, and power consumption of different models were investigated. The experiment results showed that the thermal resistance of all the models decreased when the input power increased. Besides, the model with shorter carbon fiber plate length, larger fan pitch and larger fan number had the lower thermal resistance. The model with five fans, 11 mm fan pitch, 40 mm carbon fiber plate and 10 mm Mylar plate had the lowest thermal resistance at 3.14 °C/W under the 12 W input power, while the thermal resistance of natural convection was 4.88 °C/W. The power consumption of the model was merely 0.05 W.\",\"PeriodicalId\":442782,\"journal\":{\"name\":\"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEMI-THERM.2017.7896922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEMI-THERM.2017.7896922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,将一个带有压电致动器(MFPA)的多风扇系统与一个蒸汽室集成在一起。该集成系统被嵌入到微机中进行热管理。MFPA利用磁斥力将压电致动器的功率传递给相邻的无源风扇。开发了不同风扇长度、风扇间距和风扇数量的型号。研究了不同型号的热工性能、振动幅值和功耗。实验结果表明,各模型的热阻随输入功率的增大而减小。碳纤维板长度越短、风机节距越大、风机数量越多,其热阻越小。在12 W输入功率下,5个风扇、11 mm风扇间距、40 mm碳纤维板和10 mm Mylar板的模型的热阻最低,为3.14°C/W,而自然对流的热阻为4.88°C/W。该模型的功耗仅为0.05 W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integration of a multiple piezoelectric fans system with a vapor chamber
In this study, a multiple fans system with a piezoelectric actuator (MFPA) was integrated with a vapor chamber. The integrated system was embedded in a micro-computer for its thermal management. The MFPA utilized magnetic repulsive force to transfer power from the piezoelectric actuator to the adjacent passive fans. Models with different fan length, fan pitch and the number of the fans were developed. The thermal performance, vibrational amplitude, and power consumption of different models were investigated. The experiment results showed that the thermal resistance of all the models decreased when the input power increased. Besides, the model with shorter carbon fiber plate length, larger fan pitch and larger fan number had the lower thermal resistance. The model with five fans, 11 mm fan pitch, 40 mm carbon fiber plate and 10 mm Mylar plate had the lowest thermal resistance at 3.14 °C/W under the 12 W input power, while the thermal resistance of natural convection was 4.88 °C/W. The power consumption of the model was merely 0.05 W.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An experimental and theoretical investigation of the effects of supply air conditions on computational efficiency in data centers employing aisle containment Performance of a mixed mode air handling unit for direct liquid-cooled servers High performance computing (HPC) 3 dimensional integrated (3DI) thermal test vehicle validation effort Rack-level study of hybrid cooled servers using warm water cooling for distributed vs. centralized pumping systems A new hybrid heat sink with impinging micro-jet arrays and microchannels fabricated using high volume additive manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1