快速和准确的PPA建模与迁移学习

Luis Francisco, P. Franzon, W. R. Davis
{"title":"快速和准确的PPA建模与迁移学习","authors":"Luis Francisco, P. Franzon, W. R. Davis","doi":"10.1109/MLCAD52597.2021.9531109","DOIUrl":null,"url":null,"abstract":"The power, performance, and area (PPA) of a System-on-Chip (SoC) is known only after a months-long process. This process includes iterations over the architectural design, register transfer level implementation, RTL synthesis, and place and route. Knowing the PPA estimates for a system early in the design stages can help resolve tradeoffs that will affect the final design. This work presents a machine learning approach using gradient boost models and neural networks to fast and accurately predict the PPA. This work focuses on reducing the number of samples used to create the models. The models use transfer learning to predict the PPA for new design configurations and corner conditions based on previous models. The models predict the PPA as a function of parameters accessible during the RTL synthesis. The proposed models achieved PPA predictions up to 99% accurate and using as few as 10 data samples can achieve accuracies better than 96%.","PeriodicalId":210763,"journal":{"name":"2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fast and Accurate PPA Modeling with Transfer Learning\",\"authors\":\"Luis Francisco, P. Franzon, W. R. Davis\",\"doi\":\"10.1109/MLCAD52597.2021.9531109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The power, performance, and area (PPA) of a System-on-Chip (SoC) is known only after a months-long process. This process includes iterations over the architectural design, register transfer level implementation, RTL synthesis, and place and route. Knowing the PPA estimates for a system early in the design stages can help resolve tradeoffs that will affect the final design. This work presents a machine learning approach using gradient boost models and neural networks to fast and accurately predict the PPA. This work focuses on reducing the number of samples used to create the models. The models use transfer learning to predict the PPA for new design configurations and corner conditions based on previous models. The models predict the PPA as a function of parameters accessible during the RTL synthesis. The proposed models achieved PPA predictions up to 99% accurate and using as few as 10 data samples can achieve accuracies better than 96%.\",\"PeriodicalId\":210763,\"journal\":{\"name\":\"2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLCAD52597.2021.9531109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLCAD52597.2021.9531109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

系统级芯片(SoC)的功耗、性能和面积(PPA)需要经过长达数月的过程才能知道。这个过程包括对架构设计、寄存器传输级实现、RTL合成以及位置和路由的迭代。在设计阶段早期了解系统的PPA估计可以帮助解决影响最终设计的权衡。这项工作提出了一种使用梯度增强模型和神经网络的机器学习方法来快速准确地预测PPA。这项工作的重点是减少用于创建模型的样本数量。该模型使用迁移学习来预测基于先前模型的新设计配置和拐角条件的PPA。该模型预测PPA是RTL合成过程中可获得参数的函数。所提出的模型实现了高达99%的PPA预测准确率,并且只需使用10个数据样本就可以实现优于96%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast and Accurate PPA Modeling with Transfer Learning
The power, performance, and area (PPA) of a System-on-Chip (SoC) is known only after a months-long process. This process includes iterations over the architectural design, register transfer level implementation, RTL synthesis, and place and route. Knowing the PPA estimates for a system early in the design stages can help resolve tradeoffs that will affect the final design. This work presents a machine learning approach using gradient boost models and neural networks to fast and accurately predict the PPA. This work focuses on reducing the number of samples used to create the models. The models use transfer learning to predict the PPA for new design configurations and corner conditions based on previous models. The models predict the PPA as a function of parameters accessible during the RTL synthesis. The proposed models achieved PPA predictions up to 99% accurate and using as few as 10 data samples can achieve accuracies better than 96%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPT: An Adaptive Machine Learning Framework with Application to Lithography Hotspot Detection Approximate Divider Design Based on Counting-Based Stochastic Computing Division A Circuit Attention Network-Based Actor-Critic Learning Approach to Robust Analog Transistor Sizing Massive Figure Extraction and Classification in Electronic Component Datasheets for Accelerating PCB Design Preparation Fast Electrostatic Analysis For VLSI Aging based on Generative Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1