利用仿真和随机矩阵理论识别网络流量状态

V. Rojkova, Y. Khalil, Adel Said Elmaghraby, M. Kantardzic
{"title":"利用仿真和随机矩阵理论识别网络流量状态","authors":"V. Rojkova, Y. Khalil, Adel Said Elmaghraby, M. Kantardzic","doi":"10.1109/ISSPIT.2007.4458024","DOIUrl":null,"url":null,"abstract":"The traffic behavior of the University of Louisville network with the interconnected backbone routers and the number of Virtual Local Area Network (VLAN) subnets is investigated using the Random Matrix Theory (RMT) approach. We employ the system of equal interval time series of traffic counts at all router to router and router to subnet connections as a representation of the inter-domain traffic. The cross-correlation matrix C of the real and simulated traffic rate changes between different traffic time series is calculated and tested against null- hypothesis of random interactions. The majority of the eigenvalues lambdai of matrix C fall within the bounds predicted by the RMT for the eigenvalues of random correlation matrices. The inverse participation ratio (IPR) of congested traffic shows the higher level of localization (fewer number of randomly interacting network nodes). In other words, the IPR level signifies the start of congestion or correlated traffic. Hence, the RMT based model for multiple input multiple output (MIMO) system widely accepted in wireless communication domain is quite applicable for analysis and modeling of traffic dynamics of wired systems. In particular, the IPR of the RMT predicted boundaries in real traffic can be used as a congestion indicator in network congestion control mechanisms.","PeriodicalId":299267,"journal":{"name":"2007 IEEE International Symposium on Signal Processing and Information Technology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Use of Simulation and Random Matrix Theory to Identify the State of Network Traffic\",\"authors\":\"V. Rojkova, Y. Khalil, Adel Said Elmaghraby, M. Kantardzic\",\"doi\":\"10.1109/ISSPIT.2007.4458024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traffic behavior of the University of Louisville network with the interconnected backbone routers and the number of Virtual Local Area Network (VLAN) subnets is investigated using the Random Matrix Theory (RMT) approach. We employ the system of equal interval time series of traffic counts at all router to router and router to subnet connections as a representation of the inter-domain traffic. The cross-correlation matrix C of the real and simulated traffic rate changes between different traffic time series is calculated and tested against null- hypothesis of random interactions. The majority of the eigenvalues lambdai of matrix C fall within the bounds predicted by the RMT for the eigenvalues of random correlation matrices. The inverse participation ratio (IPR) of congested traffic shows the higher level of localization (fewer number of randomly interacting network nodes). In other words, the IPR level signifies the start of congestion or correlated traffic. Hence, the RMT based model for multiple input multiple output (MIMO) system widely accepted in wireless communication domain is quite applicable for analysis and modeling of traffic dynamics of wired systems. In particular, the IPR of the RMT predicted boundaries in real traffic can be used as a congestion indicator in network congestion control mechanisms.\",\"PeriodicalId\":299267,\"journal\":{\"name\":\"2007 IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2007.4458024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2007.4458024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

采用随机矩阵理论(RMT)方法研究了由骨干路由器和VLAN子网组成的路易斯维尔大学网络的流量行为。我们在所有路由器到路由器和路由器到子网的连接中使用相等间隔时间序列的流量计数系统作为域间流量的表示。计算了不同交通时间序列间真实和模拟交通速率变化的互相关系矩阵C,并对随机相互作用的零假设进行了检验。矩阵C的大部分特征值λ落在RMT对随机相关矩阵的特征值预测的范围内。拥塞流量的逆参与比(IPR)表明其局部化程度较高(随机交互的网络节点数量较少)。换句话说,IPR级别表示拥塞或相关流量的开始。因此,无线通信领域广泛采用的基于RMT的多输入多输出(MIMO)系统模型非常适用于有线系统的流量动态分析和建模。特别是RMT预测边界在真实流量中的IPR可以作为网络拥塞控制机制中的拥塞指示器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of Simulation and Random Matrix Theory to Identify the State of Network Traffic
The traffic behavior of the University of Louisville network with the interconnected backbone routers and the number of Virtual Local Area Network (VLAN) subnets is investigated using the Random Matrix Theory (RMT) approach. We employ the system of equal interval time series of traffic counts at all router to router and router to subnet connections as a representation of the inter-domain traffic. The cross-correlation matrix C of the real and simulated traffic rate changes between different traffic time series is calculated and tested against null- hypothesis of random interactions. The majority of the eigenvalues lambdai of matrix C fall within the bounds predicted by the RMT for the eigenvalues of random correlation matrices. The inverse participation ratio (IPR) of congested traffic shows the higher level of localization (fewer number of randomly interacting network nodes). In other words, the IPR level signifies the start of congestion or correlated traffic. Hence, the RMT based model for multiple input multiple output (MIMO) system widely accepted in wireless communication domain is quite applicable for analysis and modeling of traffic dynamics of wired systems. In particular, the IPR of the RMT predicted boundaries in real traffic can be used as a congestion indicator in network congestion control mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distribution of a Stochastic Control Algorithm Applied to Gas Storage Valuation Efficient Synthesis of Arbitrary Viewpoint Images Using 3-D Geometric Model and Mesh-Based Specular Reflection Tracing Relative Iris Codes Towards Evaluation of Phonics Method for Teaching of Reading Using Artificial Neural Networks (A Cognitive Modeling Approach) A concept of mathematical methods for the optimization of the post-processing of nuclear resonance spectra of the human skeletal musculature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1