基于身体传感器网络的帕金森患者步态识别分析系统

Shancang Li, Jue Wang, Xinheng Wang
{"title":"基于身体传感器网络的帕金森患者步态识别分析系统","authors":"Shancang Li, Jue Wang, Xinheng Wang","doi":"10.1504/IJCNDS.2011.042379","DOIUrl":null,"url":null,"abstract":"Gait analysis of human plays a significant role in maintaining the well-being of our mobility and healthcare, and it can be used for various e-healthcare systems for fast medical prognosis and diagnosis. In this paper we have developed a novel body sensor network based recognition system to identify the specific gait pattern of Parkinson's disease (PD). Firstly, a BSN with 16 nodes is used to acquire the gait information from the PD patients. Then, an algorithm is developed based on local linear embedding (LLE) to extract and recognize the gait features. Experiments demonstrate the effectiveness of proposed scheme. The results show that the proposed scheme has a recognition rate of about 95.57% for gait patterns of PD, which is higher than the conventional PCA feature extraction method. The proposed system can identify PD patients from normal people and by their gait map with high reliability and appears a promising aid in the diagnosis of the Parkinson's disease.","PeriodicalId":232205,"journal":{"name":"2010 IEEE Globecom Workshops","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A novel gait recognition analysis system based on body sensor networks for patients with parkinson's disease\",\"authors\":\"Shancang Li, Jue Wang, Xinheng Wang\",\"doi\":\"10.1504/IJCNDS.2011.042379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gait analysis of human plays a significant role in maintaining the well-being of our mobility and healthcare, and it can be used for various e-healthcare systems for fast medical prognosis and diagnosis. In this paper we have developed a novel body sensor network based recognition system to identify the specific gait pattern of Parkinson's disease (PD). Firstly, a BSN with 16 nodes is used to acquire the gait information from the PD patients. Then, an algorithm is developed based on local linear embedding (LLE) to extract and recognize the gait features. Experiments demonstrate the effectiveness of proposed scheme. The results show that the proposed scheme has a recognition rate of about 95.57% for gait patterns of PD, which is higher than the conventional PCA feature extraction method. The proposed system can identify PD patients from normal people and by their gait map with high reliability and appears a promising aid in the diagnosis of the Parkinson's disease.\",\"PeriodicalId\":232205,\"journal\":{\"name\":\"2010 IEEE Globecom Workshops\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Globecom Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCNDS.2011.042379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Globecom Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCNDS.2011.042379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

人体步态分析在维护我们的行动健康和医疗保健方面发挥着重要作用,可用于各种电子医疗保健系统,用于快速医疗预后和诊断。在本文中,我们开发了一种新的基于身体传感器网络的识别系统来识别帕金森病(PD)的特定步态模式。首先,利用16个节点的BSN获取PD患者的步态信息;然后,提出了一种基于局部线性嵌入(LLE)的步态特征提取与识别算法。实验证明了该方案的有效性。结果表明,该方法对PD步态模式的识别率为95.57%,高于传统的PCA特征提取方法。该系统可以从正常人和步态图中识别PD患者,具有很高的可靠性,在帕金森病的诊断中具有很好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel gait recognition analysis system based on body sensor networks for patients with parkinson's disease
Gait analysis of human plays a significant role in maintaining the well-being of our mobility and healthcare, and it can be used for various e-healthcare systems for fast medical prognosis and diagnosis. In this paper we have developed a novel body sensor network based recognition system to identify the specific gait pattern of Parkinson's disease (PD). Firstly, a BSN with 16 nodes is used to acquire the gait information from the PD patients. Then, an algorithm is developed based on local linear embedding (LLE) to extract and recognize the gait features. Experiments demonstrate the effectiveness of proposed scheme. The results show that the proposed scheme has a recognition rate of about 95.57% for gait patterns of PD, which is higher than the conventional PCA feature extraction method. The proposed system can identify PD patients from normal people and by their gait map with high reliability and appears a promising aid in the diagnosis of the Parkinson's disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile radio channels' estimation for SC-FDMA systems by means of adequate noise and inter-carrier interference filtering in a transformed domain Performance enhancement in limited feedback precoded spatial multiplexing MIMO-OFDM systems by using multi-block channel prediction Techniques for embracing intra-cell unbalanced bit error characteristics in MLC NAND flash memory 4K digital cinema home theater over high throughput wireless transmission system Outage analysis for WCDMA femtocell with uplink attenuation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1