基于pca的子空间集成的高维数据子空间离群点检测

Mahboobeh Riahi-Madvar, B. Nasersharif, A. A. Azirani
{"title":"基于pca的子空间集成的高维数据子空间离群点检测","authors":"Mahboobeh Riahi-Madvar, B. Nasersharif, A. A. Azirani","doi":"10.1109/CSICC52343.2021.9420589","DOIUrl":null,"url":null,"abstract":"Outlier detection in high dimensional data faces the challenge of curse of dimensionality where irrelevant features may prevent detection of outliers. The Principal Component Analysis (PCA) is widely used for dimensionality reduction in high dimensional outlier detection problem. While no single subspace can to thoroughly capture the outlier data points; we propose to combine the result of multiple subspaces to deal with this situation. In this research, we propose a subspace outlier detection algorithm in high dimensional data using an ensemble of PCA-based subspaces (SODEP) method. Three relevant subspaces are selected using PCA features to discover different types of outliers and subsequently, compute outlier scores in the projected subspaces. The experimental results show that our ensemble-based outlier selection is a promising method in high dimensional data and has better efficiency than other compared methods.","PeriodicalId":374593,"journal":{"name":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Subspace Outlier Detection in High Dimensional Data using Ensemble of PCA-based Subspaces\",\"authors\":\"Mahboobeh Riahi-Madvar, B. Nasersharif, A. A. Azirani\",\"doi\":\"10.1109/CSICC52343.2021.9420589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outlier detection in high dimensional data faces the challenge of curse of dimensionality where irrelevant features may prevent detection of outliers. The Principal Component Analysis (PCA) is widely used for dimensionality reduction in high dimensional outlier detection problem. While no single subspace can to thoroughly capture the outlier data points; we propose to combine the result of multiple subspaces to deal with this situation. In this research, we propose a subspace outlier detection algorithm in high dimensional data using an ensemble of PCA-based subspaces (SODEP) method. Three relevant subspaces are selected using PCA features to discover different types of outliers and subsequently, compute outlier scores in the projected subspaces. The experimental results show that our ensemble-based outlier selection is a promising method in high dimensional data and has better efficiency than other compared methods.\",\"PeriodicalId\":374593,\"journal\":{\"name\":\"2021 26th International Computer Conference, Computer Society of Iran (CSICC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 26th International Computer Conference, Computer Society of Iran (CSICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICC52343.2021.9420589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICC52343.2021.9420589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

高维数据的异常点检测面临着维度诅咒的挑战,其中不相关的特征可能会阻碍异常点的检测。主成分分析(PCA)被广泛用于高维异常点检测问题的降维。而没有一个单独的子空间可以完全捕获离群数据点;我们建议结合多个子空间的结果来处理这种情况。在本研究中,我们提出了一种基于pca的子空间集成(SODEP)方法的高维数据子空间离群点检测算法。利用PCA特征选择三个相关的子空间来发现不同类型的离群值,然后在投影子空间中计算离群值得分。实验结果表明,基于集成的离群点选择方法是一种很有前途的高维数据选择方法,并且比其他比较方法具有更好的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Subspace Outlier Detection in High Dimensional Data using Ensemble of PCA-based Subspaces
Outlier detection in high dimensional data faces the challenge of curse of dimensionality where irrelevant features may prevent detection of outliers. The Principal Component Analysis (PCA) is widely used for dimensionality reduction in high dimensional outlier detection problem. While no single subspace can to thoroughly capture the outlier data points; we propose to combine the result of multiple subspaces to deal with this situation. In this research, we propose a subspace outlier detection algorithm in high dimensional data using an ensemble of PCA-based subspaces (SODEP) method. Three relevant subspaces are selected using PCA features to discover different types of outliers and subsequently, compute outlier scores in the projected subspaces. The experimental results show that our ensemble-based outlier selection is a promising method in high dimensional data and has better efficiency than other compared methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning for End-to-End ASR to Deal with Low-Resource Problem in Persian Language An SDN-based Firewall for Networks with Varying Security Requirements A Face-Mask Detection Approach based on YOLO Applied for a New Collected Dataset Telegram group recommendation based on users' migration Design of an IoT-based Flood Early Detection System using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1