R. Sowah, K. O. Ampadu, A. Ofoli, K. Koumadi, Godfrey A. Mills, Joseph Nortey
{"title":"基于模糊逻辑的汽车火灾探测与控制系统的设计与实现","authors":"R. Sowah, K. O. Ampadu, A. Ofoli, K. Koumadi, Godfrey A. Mills, Joseph Nortey","doi":"10.1109/IAS.2016.7731880","DOIUrl":null,"url":null,"abstract":"The immense benefits of fire in road transport cannot be overemphasized. However more than two thousand vehicles are damaged by unwanted fire on a daily basis. On a global scale, incendiary losses to the automobile and insurance industries have ran into billions of dollars over the last decade. A not-so-distant contributory factor is the lack of a sophisticated fire safety system on the automobile. This has been addressed by designing and implementing fuzzy logic control system with feedback over an Arduino micro-controller system. The automatic system consisting of flame sensors, temperature sensors, smoke sensors and a re-engineered mobile carbon dioxide air-conditioning unit was tested on a medium sized physical car. Results show that the automobile fire detection and control system devoid of false alarms, detects and extinguishes fire under 20 seconds. An innovative, very promising solution module for hardware implementation in fire detection and control for automobiles has been developed by using new algorithms and fuzzy logic.","PeriodicalId":306377,"journal":{"name":"2016 IEEE Industry Applications Society Annual Meeting","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Design and implementation of a fire detection and control system for automobiles using fuzzy logic\",\"authors\":\"R. Sowah, K. O. Ampadu, A. Ofoli, K. Koumadi, Godfrey A. Mills, Joseph Nortey\",\"doi\":\"10.1109/IAS.2016.7731880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The immense benefits of fire in road transport cannot be overemphasized. However more than two thousand vehicles are damaged by unwanted fire on a daily basis. On a global scale, incendiary losses to the automobile and insurance industries have ran into billions of dollars over the last decade. A not-so-distant contributory factor is the lack of a sophisticated fire safety system on the automobile. This has been addressed by designing and implementing fuzzy logic control system with feedback over an Arduino micro-controller system. The automatic system consisting of flame sensors, temperature sensors, smoke sensors and a re-engineered mobile carbon dioxide air-conditioning unit was tested on a medium sized physical car. Results show that the automobile fire detection and control system devoid of false alarms, detects and extinguishes fire under 20 seconds. An innovative, very promising solution module for hardware implementation in fire detection and control for automobiles has been developed by using new algorithms and fuzzy logic.\",\"PeriodicalId\":306377,\"journal\":{\"name\":\"2016 IEEE Industry Applications Society Annual Meeting\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2016.7731880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2016.7731880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and implementation of a fire detection and control system for automobiles using fuzzy logic
The immense benefits of fire in road transport cannot be overemphasized. However more than two thousand vehicles are damaged by unwanted fire on a daily basis. On a global scale, incendiary losses to the automobile and insurance industries have ran into billions of dollars over the last decade. A not-so-distant contributory factor is the lack of a sophisticated fire safety system on the automobile. This has been addressed by designing and implementing fuzzy logic control system with feedback over an Arduino micro-controller system. The automatic system consisting of flame sensors, temperature sensors, smoke sensors and a re-engineered mobile carbon dioxide air-conditioning unit was tested on a medium sized physical car. Results show that the automobile fire detection and control system devoid of false alarms, detects and extinguishes fire under 20 seconds. An innovative, very promising solution module for hardware implementation in fire detection and control for automobiles has been developed by using new algorithms and fuzzy logic.