A. Chepurnenko, Tatiana Kondratieva, Timur Deberdeev, V. Akopyan, A. Avakov, V. Chepurnenko
{"title":"基于梯度增强算法CatBoost的聚合物流变参数预测","authors":"A. Chepurnenko, Tatiana Kondratieva, Timur Deberdeev, V. Akopyan, A. Avakov, V. Chepurnenko","doi":"10.31044/1994-6260-2023-0-6-21-29","DOIUrl":null,"url":null,"abstract":"The article deals with the problem of determining the rheological parameters of polymers from stress relaxation curves using the CatBoost machine learning algorithm. The model is trained on theoretical curves constructed using the non-linear Maxwell-Gurevich equation. A comparison is made with other methods, including the classical algorithm, non-linear optimization methods and artificial neural networks.","PeriodicalId":166286,"journal":{"name":"All the Materials. Encyclopedic Reference Book.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction of rheological parameters of polymers, using gradient boosting algorithm CatBoost\",\"authors\":\"A. Chepurnenko, Tatiana Kondratieva, Timur Deberdeev, V. Akopyan, A. Avakov, V. Chepurnenko\",\"doi\":\"10.31044/1994-6260-2023-0-6-21-29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article deals with the problem of determining the rheological parameters of polymers from stress relaxation curves using the CatBoost machine learning algorithm. The model is trained on theoretical curves constructed using the non-linear Maxwell-Gurevich equation. A comparison is made with other methods, including the classical algorithm, non-linear optimization methods and artificial neural networks.\",\"PeriodicalId\":166286,\"journal\":{\"name\":\"All the Materials. Encyclopedic Reference Book.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"All the Materials. Encyclopedic Reference Book.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31044/1994-6260-2023-0-6-21-29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"All the Materials. Encyclopedic Reference Book.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31044/1994-6260-2023-0-6-21-29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of rheological parameters of polymers, using gradient boosting algorithm CatBoost
The article deals with the problem of determining the rheological parameters of polymers from stress relaxation curves using the CatBoost machine learning algorithm. The model is trained on theoretical curves constructed using the non-linear Maxwell-Gurevich equation. A comparison is made with other methods, including the classical algorithm, non-linear optimization methods and artificial neural networks.