胎儿心率的语法演化分类

D. Gavrilis, I. Tsoulos
{"title":"胎儿心率的语法演化分类","authors":"D. Gavrilis, I. Tsoulos","doi":"10.1109/SIPS.2005.1579906","DOIUrl":null,"url":null,"abstract":"There is an ongoing effort to develop advanced methods and computer-based systems to assist obstetricians in the difficult task of feature extraction and classification of the cardiotocogram (CTG), which is the most widely used electronic fetal monitoring (EFM) method worldwide. A novel method for feature construction is presented for efficient classification of CTG based on information extracted from fetal heart rate (FHR) signal. The proposed method is based on grammatical evolution in order to construct new features from existing ones using nonlinear transformations. This method is tested on a data set of intrapartum cases achieving accuracy of 92.5%.","PeriodicalId":436123,"journal":{"name":"IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Classification of fetal heart rate using grammatical evolution\",\"authors\":\"D. Gavrilis, I. Tsoulos\",\"doi\":\"10.1109/SIPS.2005.1579906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an ongoing effort to develop advanced methods and computer-based systems to assist obstetricians in the difficult task of feature extraction and classification of the cardiotocogram (CTG), which is the most widely used electronic fetal monitoring (EFM) method worldwide. A novel method for feature construction is presented for efficient classification of CTG based on information extracted from fetal heart rate (FHR) signal. The proposed method is based on grammatical evolution in order to construct new features from existing ones using nonlinear transformations. This method is tested on a data set of intrapartum cases achieving accuracy of 92.5%.\",\"PeriodicalId\":436123,\"journal\":{\"name\":\"IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPS.2005.1579906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2005.1579906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

目前正在努力开发先进的方法和基于计算机的系统,以协助产科医生完成心动图(CTG)的特征提取和分类的艰巨任务,这是世界上使用最广泛的电子胎儿监测(EFM)方法。提出了一种基于胎儿心率信号信息的特征构建方法,用于CTG的有效分类。该方法基于语法演化,利用非线性变换从已有特征中构造新特征。该方法在产时病例数据集上进行了测试,准确率为92.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of fetal heart rate using grammatical evolution
There is an ongoing effort to develop advanced methods and computer-based systems to assist obstetricians in the difficult task of feature extraction and classification of the cardiotocogram (CTG), which is the most widely used electronic fetal monitoring (EFM) method worldwide. A novel method for feature construction is presented for efficient classification of CTG based on information extracted from fetal heart rate (FHR) signal. The proposed method is based on grammatical evolution in order to construct new features from existing ones using nonlinear transformations. This method is tested on a data set of intrapartum cases achieving accuracy of 92.5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient design of symbol detector for MIMO-OFDM based wireless LANs Scalable transcoding for video transmission over space-time OFDM systems A dynamic normalization technique for decoding LDPC codes A comprehensive energy model and energy-quality evaluation of wireless transceiver front-ends An AS-DSP for forward error correction applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1