利用主成分分析对气候数据进行有损压缩

Rachit Parikh, Nitin Sharma, Ankit Bansal
{"title":"利用主成分分析对气候数据进行有损压缩","authors":"Rachit Parikh, Nitin Sharma, Ankit Bansal","doi":"10.1109/ICNTE44896.2019.8945947","DOIUrl":null,"url":null,"abstract":"Enormous size of climate data has posed a difficulty in terms of storage since a long time. Principal Component Analysis is a well known method used for data compression. This paper gives a brief idea about the compression of climate data using Principal Component Analysis by modifying the data obtained from the weather station. A minor modification in handling data led to a high compression ratio. This compressed file can then be processed to retrieve the data again with a significant accuracy. The data obtained from the retrieval using compressed file almost matched the real time data.","PeriodicalId":292408,"journal":{"name":"2019 International Conference on Nascent Technologies in Engineering (ICNTE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lossy compression of climate data using principal component analysis\",\"authors\":\"Rachit Parikh, Nitin Sharma, Ankit Bansal\",\"doi\":\"10.1109/ICNTE44896.2019.8945947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enormous size of climate data has posed a difficulty in terms of storage since a long time. Principal Component Analysis is a well known method used for data compression. This paper gives a brief idea about the compression of climate data using Principal Component Analysis by modifying the data obtained from the weather station. A minor modification in handling data led to a high compression ratio. This compressed file can then be processed to retrieve the data again with a significant accuracy. The data obtained from the retrieval using compressed file almost matched the real time data.\",\"PeriodicalId\":292408,\"journal\":{\"name\":\"2019 International Conference on Nascent Technologies in Engineering (ICNTE)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Nascent Technologies in Engineering (ICNTE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNTE44896.2019.8945947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Nascent Technologies in Engineering (ICNTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNTE44896.2019.8945947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,海量的气候数据给存储带来了困难。主成分分析是一种众所周知的用于数据压缩的方法。本文简要介绍了利用主成分分析方法对气象站数据进行压缩的方法。处理数据时的一个小改动导致了高压缩比。然后可以处理这个压缩文件,以非常准确的方式再次检索数据。压缩文件检索得到的数据与实时数据基本吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lossy compression of climate data using principal component analysis
Enormous size of climate data has posed a difficulty in terms of storage since a long time. Principal Component Analysis is a well known method used for data compression. This paper gives a brief idea about the compression of climate data using Principal Component Analysis by modifying the data obtained from the weather station. A minor modification in handling data led to a high compression ratio. This compressed file can then be processed to retrieve the data again with a significant accuracy. The data obtained from the retrieval using compressed file almost matched the real time data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Web Application for Screening Resume Top-Down Approach in Design and Simulation of Grid Integrated Solar Rooftop PV System Design Considerations and Simulation of Superconducting Transformers Portal Based Prepaid Energy Billing System Using GSM Smart Recommendation System Based on Product Reviews Using Random Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1