Keishi Ohtonari, Y. Arakawa, Hiroki Ogata, Daisuke Tujimoto, Y. Yamanishi
{"title":"循环等离子体气泡流的高通量注射","authors":"Keishi Ohtonari, Y. Arakawa, Hiroki Ogata, Daisuke Tujimoto, Y. Yamanishi","doi":"10.1109/NEMS.2016.7758218","DOIUrl":null,"url":null,"abstract":"We have succeeded in injection of plasmid to adherent cells which are suspended in the plasma-bubbles laden circulation flow in a chamber. High-speed plasma-bubbles are generated by glass electrode and the air-liquid interface has a stiction force which draws the gene (plasmid) and stick to the air-liquid interface. The circulating flow increased the chances for cells to contact air-liquid interface of bubbles which is enclosing plasma or reactive gas. Finally, the high reactive interface enables gene transfer to cells efficiently. This proposed two dimensional microfluidic chip contributes to high-throughput gene transfer in bio-medical applications.","PeriodicalId":150449,"journal":{"name":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput injection by circulating plasma-bubbles laden flows\",\"authors\":\"Keishi Ohtonari, Y. Arakawa, Hiroki Ogata, Daisuke Tujimoto, Y. Yamanishi\",\"doi\":\"10.1109/NEMS.2016.7758218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have succeeded in injection of plasmid to adherent cells which are suspended in the plasma-bubbles laden circulation flow in a chamber. High-speed plasma-bubbles are generated by glass electrode and the air-liquid interface has a stiction force which draws the gene (plasmid) and stick to the air-liquid interface. The circulating flow increased the chances for cells to contact air-liquid interface of bubbles which is enclosing plasma or reactive gas. Finally, the high reactive interface enables gene transfer to cells efficiently. This proposed two dimensional microfluidic chip contributes to high-throughput gene transfer in bio-medical applications.\",\"PeriodicalId\":150449,\"journal\":{\"name\":\"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"218 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2016.7758218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2016.7758218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-throughput injection by circulating plasma-bubbles laden flows
We have succeeded in injection of plasmid to adherent cells which are suspended in the plasma-bubbles laden circulation flow in a chamber. High-speed plasma-bubbles are generated by glass electrode and the air-liquid interface has a stiction force which draws the gene (plasmid) and stick to the air-liquid interface. The circulating flow increased the chances for cells to contact air-liquid interface of bubbles which is enclosing plasma or reactive gas. Finally, the high reactive interface enables gene transfer to cells efficiently. This proposed two dimensional microfluidic chip contributes to high-throughput gene transfer in bio-medical applications.