{"title":"一种完全可重构的低噪声生物电位传感放大器","authors":"Tzu-Yun Wang, M. Lai, C. Twigg, Sheng-Yu Peng","doi":"10.1109/BioCAS.2013.6679682","DOIUrl":null,"url":null,"abstract":"In this paper, we present a fully reconfigurable biopotential sensing amplifier, which employs floating-gate transistors for the programming of the low-frequency cutoff corner and for and for common-mode feedback implementation without consuming any extra power. With a supply voltage of 2.5V, the measured midband gain is 40.7dB and the measured input-referred noise is 2.8 μVrms. The chip was tested under several configurations with the amplifier bandwidth being programmed to 100Hz, 1kHz, and 10 kHz. The measured noise efficiency factors in these bandwidth settings are 1.96, 2.01 and 2.25. The measured common-mode rejection and the supply rejection are above 70 dB. The measured dynamic range is 60 dB with total harmonic distortion less than 0.1%.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fully reconfigurable low-noise biopotential sensing amplifier\",\"authors\":\"Tzu-Yun Wang, M. Lai, C. Twigg, Sheng-Yu Peng\",\"doi\":\"10.1109/BioCAS.2013.6679682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a fully reconfigurable biopotential sensing amplifier, which employs floating-gate transistors for the programming of the low-frequency cutoff corner and for and for common-mode feedback implementation without consuming any extra power. With a supply voltage of 2.5V, the measured midband gain is 40.7dB and the measured input-referred noise is 2.8 μVrms. The chip was tested under several configurations with the amplifier bandwidth being programmed to 100Hz, 1kHz, and 10 kHz. The measured noise efficiency factors in these bandwidth settings are 1.96, 2.01 and 2.25. The measured common-mode rejection and the supply rejection are above 70 dB. The measured dynamic range is 60 dB with total harmonic distortion less than 0.1%.\",\"PeriodicalId\":344317,\"journal\":{\"name\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioCAS.2013.6679682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2013.6679682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fully reconfigurable low-noise biopotential sensing amplifier
In this paper, we present a fully reconfigurable biopotential sensing amplifier, which employs floating-gate transistors for the programming of the low-frequency cutoff corner and for and for common-mode feedback implementation without consuming any extra power. With a supply voltage of 2.5V, the measured midband gain is 40.7dB and the measured input-referred noise is 2.8 μVrms. The chip was tested under several configurations with the amplifier bandwidth being programmed to 100Hz, 1kHz, and 10 kHz. The measured noise efficiency factors in these bandwidth settings are 1.96, 2.01 and 2.25. The measured common-mode rejection and the supply rejection are above 70 dB. The measured dynamic range is 60 dB with total harmonic distortion less than 0.1%.