{"title":"基于PMHT算法的多分量信号分类","authors":"P. Ainsleigh, T. Luginbuhl","doi":"10.1109/ICIF.2002.1021230","DOIUrl":null,"url":null,"abstract":"The probabilistic multi-hypothesis tracking (PMHT) algorithm is extended for application to classification. The PMHT model is reformulated as a bank of continuous-state hidden Markov models, allowing for supervised learning of the class-conditional probability density models, and for likelihood evaluation of multicomponent signals.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multicomponent signal classification using the PMHT algorithm\",\"authors\":\"P. Ainsleigh, T. Luginbuhl\",\"doi\":\"10.1109/ICIF.2002.1021230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The probabilistic multi-hypothesis tracking (PMHT) algorithm is extended for application to classification. The PMHT model is reformulated as a bank of continuous-state hidden Markov models, allowing for supervised learning of the class-conditional probability density models, and for likelihood evaluation of multicomponent signals.\",\"PeriodicalId\":399150,\"journal\":{\"name\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2002.1021230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multicomponent signal classification using the PMHT algorithm
The probabilistic multi-hypothesis tracking (PMHT) algorithm is extended for application to classification. The PMHT model is reformulated as a bank of continuous-state hidden Markov models, allowing for supervised learning of the class-conditional probability density models, and for likelihood evaluation of multicomponent signals.