基于深度学习的ITSs网络入侵检测框架

Osama A. El-Sayed, Salma K. Fawzy, Shahd H. Tolba, Raghda S. Salem, Youssef S. Hassan, A. M. Ahmed, Ahmed K. F. Khattab
{"title":"基于深度学习的ITSs网络入侵检测框架","authors":"Osama A. El-Sayed, Salma K. Fawzy, Shahd H. Tolba, Raghda S. Salem, Youssef S. Hassan, A. M. Ahmed, Ahmed K. F. Khattab","doi":"10.1109/ICM52667.2021.9664897","DOIUrl":null,"url":null,"abstract":"According to the increase in the number of Internet-connected devices in Intelligent Transport Systems (ITSs), the network traffic carried by ITSs has significantly increased. Consequently, the number of new security threats and attacks has increased beyond the ability of exiting systems to solve. New technologies have been recently used to address the emerging security challenges in ITSs such as the use of machine learning techniques to predict new attacks and threats. In this paper, we propose an effective solution for this problem using deep learning to detect and classify the attacks in the widely used UNSW-NB15 dataset. A discriminating feature of our work is the use of a reduced set of features (only 20 out of 49) in the proposed model. Our experimental results show that the proposed model achieves remarkable accuracy despite the use of a subset of carefully selected features in the UNSW-NB15 dataset.","PeriodicalId":212613,"journal":{"name":"2021 International Conference on Microelectronics (ICM)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Framework for Accurate Network Intrusion Detection in ITSs\",\"authors\":\"Osama A. El-Sayed, Salma K. Fawzy, Shahd H. Tolba, Raghda S. Salem, Youssef S. Hassan, A. M. Ahmed, Ahmed K. F. Khattab\",\"doi\":\"10.1109/ICM52667.2021.9664897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the increase in the number of Internet-connected devices in Intelligent Transport Systems (ITSs), the network traffic carried by ITSs has significantly increased. Consequently, the number of new security threats and attacks has increased beyond the ability of exiting systems to solve. New technologies have been recently used to address the emerging security challenges in ITSs such as the use of machine learning techniques to predict new attacks and threats. In this paper, we propose an effective solution for this problem using deep learning to detect and classify the attacks in the widely used UNSW-NB15 dataset. A discriminating feature of our work is the use of a reduced set of features (only 20 out of 49) in the proposed model. Our experimental results show that the proposed model achieves remarkable accuracy despite the use of a subset of carefully selected features in the UNSW-NB15 dataset.\",\"PeriodicalId\":212613,\"journal\":{\"name\":\"2021 International Conference on Microelectronics (ICM)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Microelectronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM52667.2021.9664897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM52667.2021.9664897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着智能交通系统中联网设备数量的增加,智能交通系统承载的网络流量显著增加。因此,新的安全威胁和攻击的数量已经超出了现有系统的解决能力。最近,新技术被用于解决信息通信系统中出现的安全挑战,例如使用机器学习技术来预测新的攻击和威胁。在本文中,我们提出了一种有效的解决方案,利用深度学习对广泛使用的UNSW-NB15数据集中的攻击进行检测和分类。我们工作的一个区别特征是在提出的模型中使用了一组减少的特征(49个特征中只有20个)。我们的实验结果表明,尽管使用了UNSW-NB15数据集中精心选择的特征子集,但所提出的模型仍取得了显着的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning Framework for Accurate Network Intrusion Detection in ITSs
According to the increase in the number of Internet-connected devices in Intelligent Transport Systems (ITSs), the network traffic carried by ITSs has significantly increased. Consequently, the number of new security threats and attacks has increased beyond the ability of exiting systems to solve. New technologies have been recently used to address the emerging security challenges in ITSs such as the use of machine learning techniques to predict new attacks and threats. In this paper, we propose an effective solution for this problem using deep learning to detect and classify the attacks in the widely used UNSW-NB15 dataset. A discriminating feature of our work is the use of a reduced set of features (only 20 out of 49) in the proposed model. Our experimental results show that the proposed model achieves remarkable accuracy despite the use of a subset of carefully selected features in the UNSW-NB15 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Implementation of Yolov4-tiny for Object Detection Comparative Study of Different Activation Functions for Anomalous Sound Detection Speed Up Functional Coverage Closure of CORDIC Designs Using Machine Learning Models Lightweight Image Encryption: Cellular Automata and the Lorenz System Double Gate TFET with Germanium Pocket and Metal drain using Dual Oxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1