利用谱态隐马尔可夫模型分析时间过程基因表达数据

Qiang Huang, Ling-Yun Wu, Jibin Qu, Xiang-Sun Zhang
{"title":"利用谱态隐马尔可夫模型分析时间过程基因表达数据","authors":"Qiang Huang, Ling-Yun Wu, Jibin Qu, Xiang-Sun Zhang","doi":"10.1109/ISB.2011.6033177","DOIUrl":null,"url":null,"abstract":"More and more gene expression data are available due to the rapid development of high-throughput experimental techniques such as microarray and next generation sequencing (NGS). The gene expression data analysis is still one of the fundamental tasks in bioinformatics. In this paper, we propose a new profile-state hidden Markov model (HMM) for analyzing time-course gene expression data, which gives a new point of view to explain the variation of gene expression and regulation in different time. This model addresses the bicluster problem in time-course data efficiently and can identify the irregular shape and overlapping biclusters. The comprehensive computational experiments on simulated and real data show that the new method is effective and useful.","PeriodicalId":355056,"journal":{"name":"2011 IEEE International Conference on Systems Biology (ISB)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Analyzing time-course gene expression data using profile-state hidden Markov model\",\"authors\":\"Qiang Huang, Ling-Yun Wu, Jibin Qu, Xiang-Sun Zhang\",\"doi\":\"10.1109/ISB.2011.6033177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"More and more gene expression data are available due to the rapid development of high-throughput experimental techniques such as microarray and next generation sequencing (NGS). The gene expression data analysis is still one of the fundamental tasks in bioinformatics. In this paper, we propose a new profile-state hidden Markov model (HMM) for analyzing time-course gene expression data, which gives a new point of view to explain the variation of gene expression and regulation in different time. This model addresses the bicluster problem in time-course data efficiently and can identify the irregular shape and overlapping biclusters. The comprehensive computational experiments on simulated and real data show that the new method is effective and useful.\",\"PeriodicalId\":355056,\"journal\":{\"name\":\"2011 IEEE International Conference on Systems Biology (ISB)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Systems Biology (ISB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISB.2011.6033177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2011.6033177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于微阵列和下一代测序等高通量实验技术的快速发展,越来越多的基因表达数据可用。基因表达数据分析仍然是生物信息学的基本任务之一。本文提出了一种新的用于分析时间过程基因表达数据的谱态隐马尔可夫模型(HMM),为解释基因在不同时间的表达和调控变化提供了新的视角。该模型有效地解决了时间过程数据中的双聚类问题,能够识别不规则形状和重叠的双聚类。仿真和实际数据的综合计算实验表明了该方法的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing time-course gene expression data using profile-state hidden Markov model
More and more gene expression data are available due to the rapid development of high-throughput experimental techniques such as microarray and next generation sequencing (NGS). The gene expression data analysis is still one of the fundamental tasks in bioinformatics. In this paper, we propose a new profile-state hidden Markov model (HMM) for analyzing time-course gene expression data, which gives a new point of view to explain the variation of gene expression and regulation in different time. This model addresses the bicluster problem in time-course data efficiently and can identify the irregular shape and overlapping biclusters. The comprehensive computational experiments on simulated and real data show that the new method is effective and useful.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting coherent local patterns from time series gene expression data by a temporal biclustering method Bifurcation of an epidemic model with sub-optimal immunity and saturated recovery rate Parallel-META: A high-performance computational pipeline for metagenomic data analysis The role of GSH depletion in Resveratrol induced HeLa cell apoptosis Genomic signatures for metagenomic data analysis: Exploiting the reverse complementarity of tetranucleotides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1