{"title":"基于vsc的高压直流电网振荡阻尼控制方案的实现与分析","authors":"S. D'arco, J. Suul, M. Molinas","doi":"10.1109/EPEPEMC.2014.6980558","DOIUrl":null,"url":null,"abstract":"This paper proposes a simple method for damping of oscillations in dc grids based on Voltage Source Converters (VSCs). The damping effect is achieved by a control loop for counteracting measured dc voltage oscillations by acting on the active current reference of the ac-side VSC controller. The design of the damping method is supported by participation factor analysis and parametric sensitivities of a small-signal model representing an investigated test case. This investigated system is consisting of a single HVDC converter station connected to a dc cable equivalent and an ac grid. The validity of the developed small-signal model is verified by comparison to a simulation model including nonlinear effects of the investigated converter configuration. The small-signal model is then used to analyze the stability and dynamic characteristics of the system with and without the proposed active damping and to identify a suitable tuning of the damping controller.","PeriodicalId":325670,"journal":{"name":"2014 16th International Power Electronics and Motion Control Conference and Exposition","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Implementation and analysis of a control scheme for damping of oscillations in VSC-based HVDC grids\",\"authors\":\"S. D'arco, J. Suul, M. Molinas\",\"doi\":\"10.1109/EPEPEMC.2014.6980558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a simple method for damping of oscillations in dc grids based on Voltage Source Converters (VSCs). The damping effect is achieved by a control loop for counteracting measured dc voltage oscillations by acting on the active current reference of the ac-side VSC controller. The design of the damping method is supported by participation factor analysis and parametric sensitivities of a small-signal model representing an investigated test case. This investigated system is consisting of a single HVDC converter station connected to a dc cable equivalent and an ac grid. The validity of the developed small-signal model is verified by comparison to a simulation model including nonlinear effects of the investigated converter configuration. The small-signal model is then used to analyze the stability and dynamic characteristics of the system with and without the proposed active damping and to identify a suitable tuning of the damping controller.\",\"PeriodicalId\":325670,\"journal\":{\"name\":\"2014 16th International Power Electronics and Motion Control Conference and Exposition\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 16th International Power Electronics and Motion Control Conference and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPEMC.2014.6980558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Power Electronics and Motion Control Conference and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPEMC.2014.6980558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation and analysis of a control scheme for damping of oscillations in VSC-based HVDC grids
This paper proposes a simple method for damping of oscillations in dc grids based on Voltage Source Converters (VSCs). The damping effect is achieved by a control loop for counteracting measured dc voltage oscillations by acting on the active current reference of the ac-side VSC controller. The design of the damping method is supported by participation factor analysis and parametric sensitivities of a small-signal model representing an investigated test case. This investigated system is consisting of a single HVDC converter station connected to a dc cable equivalent and an ac grid. The validity of the developed small-signal model is verified by comparison to a simulation model including nonlinear effects of the investigated converter configuration. The small-signal model is then used to analyze the stability and dynamic characteristics of the system with and without the proposed active damping and to identify a suitable tuning of the damping controller.