P. Kudva, G. Gopalakrishnan, H. Jacobson, S. Nowick
{"title":"多输入变化下无害化定制CMOS复杂栅极网络的合成","authors":"P. Kudva, G. Gopalakrishnan, H. Jacobson, S. Nowick","doi":"10.1145/240518.240534","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of realizing hazard-free single-output Boolean functions through a network of customized complex CMOS gates tailored to a given asynchronous controller specification. A customized CMOS gate network can either be a single CMOS gate or a multilevel network of CMOS gates. It is shown that hazard-free requirements for such networks are less restrictive than for simple gate networks. Analysis and efficient synthesis methods to generate such networks under a multiple-input change assumption (MIC) are presented.","PeriodicalId":152966,"journal":{"name":"33rd Design Automation Conference Proceedings, 1996","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Synthesis of hazard-free customized CMOS complex-gate networks under multiple-input changes\",\"authors\":\"P. Kudva, G. Gopalakrishnan, H. Jacobson, S. Nowick\",\"doi\":\"10.1145/240518.240534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of realizing hazard-free single-output Boolean functions through a network of customized complex CMOS gates tailored to a given asynchronous controller specification. A customized CMOS gate network can either be a single CMOS gate or a multilevel network of CMOS gates. It is shown that hazard-free requirements for such networks are less restrictive than for simple gate networks. Analysis and efficient synthesis methods to generate such networks under a multiple-input change assumption (MIC) are presented.\",\"PeriodicalId\":152966,\"journal\":{\"name\":\"33rd Design Automation Conference Proceedings, 1996\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"33rd Design Automation Conference Proceedings, 1996\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/240518.240534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd Design Automation Conference Proceedings, 1996","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/240518.240534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of hazard-free customized CMOS complex-gate networks under multiple-input changes
This paper addresses the problem of realizing hazard-free single-output Boolean functions through a network of customized complex CMOS gates tailored to a given asynchronous controller specification. A customized CMOS gate network can either be a single CMOS gate or a multilevel network of CMOS gates. It is shown that hazard-free requirements for such networks are less restrictive than for simple gate networks. Analysis and efficient synthesis methods to generate such networks under a multiple-input change assumption (MIC) are presented.