惯性导航系统姿态修正的一种新的近似方法

H. Mohammadkarimi, H. Nobahari, A. Sharifi
{"title":"惯性导航系统姿态修正的一种新的近似方法","authors":"H. Mohammadkarimi, H. Nobahari, A. Sharifi","doi":"10.1109/ICMAE.2016.7549572","DOIUrl":null,"url":null,"abstract":"In this paper, a novel algorithm for correcting the error of attitude in inertial navigation systems is introduced. Since the oftenly used differential equations of the navigation errors show the small rotation angles instead of the error of Euler angles, the nonlinear equation between the small rotation angles and the error of Euler angles, are derived. To obtain an approximative solution for the derived equations, third order multiplication of the small rotation angles are ignored and error of Euler angles are expressed explicitly as functions of the Euler angles and the small rotation angles. Based on the obtained solution, a new algorithm for attitude correction in inertial navigation is developed. A comprehensive numerical simulation is performed and superiority of the proposed algorithm than the usual method used for attitude correction, is shown. The proposed algorithm has smaller error in calculation of Euler angles. Also, the proposed method saves the orthogonality and normality conditions of the transformation matrix.","PeriodicalId":371629,"journal":{"name":"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new approximative method for attitude correction in inertial navigation systems\",\"authors\":\"H. Mohammadkarimi, H. Nobahari, A. Sharifi\",\"doi\":\"10.1109/ICMAE.2016.7549572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel algorithm for correcting the error of attitude in inertial navigation systems is introduced. Since the oftenly used differential equations of the navigation errors show the small rotation angles instead of the error of Euler angles, the nonlinear equation between the small rotation angles and the error of Euler angles, are derived. To obtain an approximative solution for the derived equations, third order multiplication of the small rotation angles are ignored and error of Euler angles are expressed explicitly as functions of the Euler angles and the small rotation angles. Based on the obtained solution, a new algorithm for attitude correction in inertial navigation is developed. A comprehensive numerical simulation is performed and superiority of the proposed algorithm than the usual method used for attitude correction, is shown. The proposed algorithm has smaller error in calculation of Euler angles. Also, the proposed method saves the orthogonality and normality conditions of the transformation matrix.\",\"PeriodicalId\":371629,\"journal\":{\"name\":\"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMAE.2016.7549572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMAE.2016.7549572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的惯性导航系统姿态误差校正算法。由于常用的导航误差微分方程显示的是小旋转角而不是欧拉角误差,因此推导了小旋转角与欧拉角误差之间的非线性方程。为了得到导出方程的近似解,忽略了小旋转角的三阶乘法,将欧拉角误差明确表示为欧拉角和小旋转角的函数。在此基础上,提出了一种新的惯性导航姿态校正算法。最后进行了全面的数值仿真,结果表明该算法比常用的姿态校正方法具有优越性。该算法在计算欧拉角时误差较小。该方法省去了变换矩阵的正交性和正态性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new approximative method for attitude correction in inertial navigation systems
In this paper, a novel algorithm for correcting the error of attitude in inertial navigation systems is introduced. Since the oftenly used differential equations of the navigation errors show the small rotation angles instead of the error of Euler angles, the nonlinear equation between the small rotation angles and the error of Euler angles, are derived. To obtain an approximative solution for the derived equations, third order multiplication of the small rotation angles are ignored and error of Euler angles are expressed explicitly as functions of the Euler angles and the small rotation angles. Based on the obtained solution, a new algorithm for attitude correction in inertial navigation is developed. A comprehensive numerical simulation is performed and superiority of the proposed algorithm than the usual method used for attitude correction, is shown. The proposed algorithm has smaller error in calculation of Euler angles. Also, the proposed method saves the orthogonality and normality conditions of the transformation matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D peak based long range rover localization Demonstrating a holographic memory having 100 Mrad total-ionizing-dose tolerance Coupling acoustic cavitation and solidification in the modeling of light alloy melt ultrasonic treatment Dynamic analysis of vibration casting equipment Experimental study on internal flowfield characteristics and start-unstart behaviour in a two-dimensional variable geometry inlet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1