{"title":"分子生物传感中用于温度补偿的低功耗传感器","authors":"D. Venuto","doi":"10.1109/ISQED.2013.6523644","DOIUrl":null,"url":null,"abstract":"A low power smart temperature sensor followed by an SC amplifier and a 12bit Successive-Approximation analogue-digital converter (ADC) to compensate temperature deviation in drug electrochemical detection, is here presented. The proposed design is accurate within 0.1°C over the temperature range of -55°C to 125°C. A PTAT voltage is used for temperature monitoring. The succeeding ADC digitizes the output with a bit-clock of 50-kHz. The ADC has a Figure-of-Merit of 66 fJ/conversion-step. The system is implemented in an NXP CMOS 0.14μm technology. The die area is 0.21 mm2 and the whole system consumes less than 16μW for 1.2V of voltage supply.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low power sensor for temperature compensation in molecular biosensing\",\"authors\":\"D. Venuto\",\"doi\":\"10.1109/ISQED.2013.6523644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low power smart temperature sensor followed by an SC amplifier and a 12bit Successive-Approximation analogue-digital converter (ADC) to compensate temperature deviation in drug electrochemical detection, is here presented. The proposed design is accurate within 0.1°C over the temperature range of -55°C to 125°C. A PTAT voltage is used for temperature monitoring. The succeeding ADC digitizes the output with a bit-clock of 50-kHz. The ADC has a Figure-of-Merit of 66 fJ/conversion-step. The system is implemented in an NXP CMOS 0.14μm technology. The die area is 0.21 mm2 and the whole system consumes less than 16μW for 1.2V of voltage supply.\",\"PeriodicalId\":127115,\"journal\":{\"name\":\"International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2013.6523644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low power sensor for temperature compensation in molecular biosensing
A low power smart temperature sensor followed by an SC amplifier and a 12bit Successive-Approximation analogue-digital converter (ADC) to compensate temperature deviation in drug electrochemical detection, is here presented. The proposed design is accurate within 0.1°C over the temperature range of -55°C to 125°C. A PTAT voltage is used for temperature monitoring. The succeeding ADC digitizes the output with a bit-clock of 50-kHz. The ADC has a Figure-of-Merit of 66 fJ/conversion-step. The system is implemented in an NXP CMOS 0.14μm technology. The die area is 0.21 mm2 and the whole system consumes less than 16μW for 1.2V of voltage supply.