基于pso的四旋翼系统轨迹跟踪控制

Halima Housny, E. Chater, H. E. Fadil
{"title":"基于pso的四旋翼系统轨迹跟踪控制","authors":"Halima Housny, E. Chater, H. E. Fadil","doi":"10.1109/IRASET48871.2020.9092015","DOIUrl":null,"url":null,"abstract":"This paper presents an application of particle swarm optimization algorithm (PSO) to tune the scaling gains of Adaptive Neuro-Fuzzy Inference System (ANFIS) controller with a multi-closed loop control applied to nonlinear quadrotor system. First, PID control approach is used to obtain the training data set that is necessary to ANFIS design. Precisely, only the error and the error rate inputs in addition to output are used in training data set vector. Afterwards, an adaptive Neuro-Fuzzy inference system controller is designed. Then, to tune the scaling gains associated with ANFIS controller, PSO algorithm is used. Finally, an integral control action is added to the ANFIS controller output for controlling each state of the MIMO quadrotor system. The simulation test show that the results obtained with ANFIS-PSO controller are better, when compared to those obtained using conventional ANFIS controller and traditional PID.","PeriodicalId":271840,"journal":{"name":"2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"PSO-based ANFIS for quadrotor system trajectory-tracking control\",\"authors\":\"Halima Housny, E. Chater, H. E. Fadil\",\"doi\":\"10.1109/IRASET48871.2020.9092015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an application of particle swarm optimization algorithm (PSO) to tune the scaling gains of Adaptive Neuro-Fuzzy Inference System (ANFIS) controller with a multi-closed loop control applied to nonlinear quadrotor system. First, PID control approach is used to obtain the training data set that is necessary to ANFIS design. Precisely, only the error and the error rate inputs in addition to output are used in training data set vector. Afterwards, an adaptive Neuro-Fuzzy inference system controller is designed. Then, to tune the scaling gains associated with ANFIS controller, PSO algorithm is used. Finally, an integral control action is added to the ANFIS controller output for controlling each state of the MIMO quadrotor system. The simulation test show that the results obtained with ANFIS-PSO controller are better, when compared to those obtained using conventional ANFIS controller and traditional PID.\",\"PeriodicalId\":271840,\"journal\":{\"name\":\"2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRASET48871.2020.9092015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRASET48871.2020.9092015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了将粒子群优化算法(PSO)应用于非线性四旋翼系统的自适应神经模糊推理系统(ANFIS)控制器的多闭环调节增益。首先,采用PID控制的方法获取ANFIS设计所需的训练数据集。准确地说,除了输出外,训练数据集向量只使用误差和错误率输入。然后,设计了自适应神经模糊推理系统控制器。然后,利用粒子群算法对与ANFIS控制器相关的缩放增益进行调整。最后,在ANFIS控制器输出中加入积分控制动作来控制MIMO四旋翼系统的各个状态。仿真实验表明,与传统的ANFIS控制器和传统的PID控制器相比,ANFIS- pso控制器的控制效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PSO-based ANFIS for quadrotor system trajectory-tracking control
This paper presents an application of particle swarm optimization algorithm (PSO) to tune the scaling gains of Adaptive Neuro-Fuzzy Inference System (ANFIS) controller with a multi-closed loop control applied to nonlinear quadrotor system. First, PID control approach is used to obtain the training data set that is necessary to ANFIS design. Precisely, only the error and the error rate inputs in addition to output are used in training data set vector. Afterwards, an adaptive Neuro-Fuzzy inference system controller is designed. Then, to tune the scaling gains associated with ANFIS controller, PSO algorithm is used. Finally, an integral control action is added to the ANFIS controller output for controlling each state of the MIMO quadrotor system. The simulation test show that the results obtained with ANFIS-PSO controller are better, when compared to those obtained using conventional ANFIS controller and traditional PID.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conception of a Training System for Emergency Situation Managers Optimization by the Response Surface Methodology of Color Optimal Control of Wind Energy Generation System Synthesis and Characterisation of Anhydrous Proton Conducting Membranes Based on Sulfonated Poly(vinyl alcohol) and Silicotungstic Acid with or without Silica for Fuel Cell Applications Towards a behavioral network intrusion detection system based on the SVM model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1