自然语言处理中关键词提取与同义词生成的比较研究

Rasmi Rani Dhala, A.V.S Pavan Kumar, S. Panda
{"title":"自然语言处理中关键词提取与同义词生成的比较研究","authors":"Rasmi Rani Dhala, A.V.S Pavan Kumar, S. Panda","doi":"10.1109/APSIT58554.2023.10201796","DOIUrl":null,"url":null,"abstract":"Natural Language Processing (NLP) is an emerging field that aims to enable machines to understand and interpret human language. Keyword extraction and synonym generation are essential tasks in natural language processing. They play a significant role in information retrieval, text classification, and sentiment analysis. In this paper, we explore three different approaches to keyword extraction and synonym generation: rule-based model, statistical model, and extreme learning machine (ELM) model. We compare the performance of each method on a corpus of text and analyze the strengths and weaknesses of each approach. Our results show that the ELM model outperforms the other two methods in terms of accuracy and efficiency.","PeriodicalId":170044,"journal":{"name":"2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study on Keyword Extraction and Generation of Synonyms in Natural Language Processing\",\"authors\":\"Rasmi Rani Dhala, A.V.S Pavan Kumar, S. Panda\",\"doi\":\"10.1109/APSIT58554.2023.10201796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural Language Processing (NLP) is an emerging field that aims to enable machines to understand and interpret human language. Keyword extraction and synonym generation are essential tasks in natural language processing. They play a significant role in information retrieval, text classification, and sentiment analysis. In this paper, we explore three different approaches to keyword extraction and synonym generation: rule-based model, statistical model, and extreme learning machine (ELM) model. We compare the performance of each method on a corpus of text and analyze the strengths and weaknesses of each approach. Our results show that the ELM model outperforms the other two methods in terms of accuracy and efficiency.\",\"PeriodicalId\":170044,\"journal\":{\"name\":\"2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIT58554.2023.10201796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIT58554.2023.10201796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自然语言处理(NLP)是一个新兴领域,旨在使机器能够理解和解释人类语言。关键词提取和同义词生成是自然语言处理中的重要任务。它们在信息检索、文本分类和情感分析中发挥着重要作用。在本文中,我们探讨了三种不同的关键字提取和同义词生成方法:基于规则的模型、统计模型和极限学习机(ELM)模型。我们比较了每种方法在文本语料库上的性能,并分析了每种方法的优缺点。结果表明,ELM模型在准确率和效率方面都优于其他两种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparative Study on Keyword Extraction and Generation of Synonyms in Natural Language Processing
Natural Language Processing (NLP) is an emerging field that aims to enable machines to understand and interpret human language. Keyword extraction and synonym generation are essential tasks in natural language processing. They play a significant role in information retrieval, text classification, and sentiment analysis. In this paper, we explore three different approaches to keyword extraction and synonym generation: rule-based model, statistical model, and extreme learning machine (ELM) model. We compare the performance of each method on a corpus of text and analyze the strengths and weaknesses of each approach. Our results show that the ELM model outperforms the other two methods in terms of accuracy and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DGA Based Ensemble Learning Approach for Power Transformer Fault Diagnosis Review of Routing Protocols for Sink with mobility nature in Wireless Sensor Networks Comparative Analysis of Dual-edge Triggered and Sense Amplifier Based Flip-flops in 32 nm CMOS Regime Text Classification of Climate Change Tweets using Artificial Neural Networks, FastText Word Embeddings, and Latent Dirichlet Allocation An Integration of Elephant Herding Optimization and Fruit Fly Optimized Algorithm for Energy Conserving in MANET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1