基树数据结构的平台感知动态数据类型细化方法

Thomas Papastergiou, Lazaros Papadopoulos, D. Soudris
{"title":"基树数据结构的平台感知动态数据类型细化方法","authors":"Thomas Papastergiou, Lazaros Papadopoulos, D. Soudris","doi":"10.1109/SAMOS.2015.7363662","DOIUrl":null,"url":null,"abstract":"Modern embedded systems are now capable of executing complex and demanding applications that are often based on large data structures. The design of the critical data structures of the application affects the performance and the memory requirements of the whole system. Dynamic Data Structure Refinement methodology provides optimizations, mainly in list and array data structures, which are based on the application's features and access patterns. In this work, we extend various aspects of the methodology: First, we integrate radix tree optimizations. Then, we provide a set of platform-aware data structure implementations, for performing optimizations based on the hardware features. The extended methodology is evaluated using a wide set of synthetic and real-world benchmarks, in which we achieved performance and memory trade-offs up to 29.6%. Additionally, Pareto optimal data structure implementations that were not available by the previous methodology, are identified with the extended one.","PeriodicalId":346802,"journal":{"name":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Platform-aware dynamic data type refinement methodology for radix tree Data Structures\",\"authors\":\"Thomas Papastergiou, Lazaros Papadopoulos, D. Soudris\",\"doi\":\"10.1109/SAMOS.2015.7363662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern embedded systems are now capable of executing complex and demanding applications that are often based on large data structures. The design of the critical data structures of the application affects the performance and the memory requirements of the whole system. Dynamic Data Structure Refinement methodology provides optimizations, mainly in list and array data structures, which are based on the application's features and access patterns. In this work, we extend various aspects of the methodology: First, we integrate radix tree optimizations. Then, we provide a set of platform-aware data structure implementations, for performing optimizations based on the hardware features. The extended methodology is evaluated using a wide set of synthetic and real-world benchmarks, in which we achieved performance and memory trade-offs up to 29.6%. Additionally, Pareto optimal data structure implementations that were not available by the previous methodology, are identified with the extended one.\",\"PeriodicalId\":346802,\"journal\":{\"name\":\"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMOS.2015.7363662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2015.7363662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

现代嵌入式系统现在能够执行复杂且要求苛刻的应用程序,这些应用程序通常基于大型数据结构。应用程序关键数据结构的设计直接影响到整个系统的性能和内存需求。动态数据结构细化方法提供了基于应用程序的特性和访问模式的优化,主要针对列表和数组数据结构。在这项工作中,我们扩展了该方法的各个方面:首先,我们集成了基树优化。然后,我们提供了一组平台感知的数据结构实现,用于基于硬件特性执行优化。我们使用一系列广泛的综合基准和真实世界的基准来评估扩展的方法,在这些基准中,我们实现了高达29.6%的性能和内存折衷。此外,以前的方法无法实现的帕累托最优数据结构实现与扩展的方法一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Platform-aware dynamic data type refinement methodology for radix tree Data Structures
Modern embedded systems are now capable of executing complex and demanding applications that are often based on large data structures. The design of the critical data structures of the application affects the performance and the memory requirements of the whole system. Dynamic Data Structure Refinement methodology provides optimizations, mainly in list and array data structures, which are based on the application's features and access patterns. In this work, we extend various aspects of the methodology: First, we integrate radix tree optimizations. Then, we provide a set of platform-aware data structure implementations, for performing optimizations based on the hardware features. The extended methodology is evaluated using a wide set of synthetic and real-world benchmarks, in which we achieved performance and memory trade-offs up to 29.6%. Additionally, Pareto optimal data structure implementations that were not available by the previous methodology, are identified with the extended one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deterministic event-based control of Virtual Platforms for MPSoC software debugging Dynamic re-vectorization of binary code Experiences in speeding up computer vision applications on mobile computing platforms A power estimation technique for cycle-accurate higher-abstraction SystemC-based CPU models Framework for parameter analysis of FPGA-based image processing architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1