基于改进最小均值峰度算法的自适应傅立叶线性组合器

Engin Cemal Menguc
{"title":"基于改进最小均值峰度算法的自适应傅立叶线性组合器","authors":"Engin Cemal Menguc","doi":"10.1109/CEIT.2018.8751891","DOIUrl":null,"url":null,"abstract":"In this study, we propose an adaptive Fourier linear combiner (FLC) based on a modified least mean kurtosis (LMK) algorithm for canceling the sinusoidal noise signals from the desired signals. In the proposed framework, the weight coefficients of the FLC are adjusted by using the modified LMK algorithm instead of the conventional least mean square (LMS) algorithm. The fundamental reasons for using the proposed LMK algorithm in the FLC are that it provides a fast convergence rate, a lower steady-state error and a robust behavior against sinusoidal noise distributions. The performance of the proposed FLC algorithm is assessed on the noise canceling problem by comparing that of the conventional FLC based on the LMS algorithm. The simulation results demonstrate that the proposed FLC based the modified LMK algorithm outperforms its conventional LMS algorithm in terms of the convergence rate and the steady-state error.","PeriodicalId":357613,"journal":{"name":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adaptive Fourier Linear Combiner based on Modified Least Mean Kurtosis Algorithm\",\"authors\":\"Engin Cemal Menguc\",\"doi\":\"10.1109/CEIT.2018.8751891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose an adaptive Fourier linear combiner (FLC) based on a modified least mean kurtosis (LMK) algorithm for canceling the sinusoidal noise signals from the desired signals. In the proposed framework, the weight coefficients of the FLC are adjusted by using the modified LMK algorithm instead of the conventional least mean square (LMS) algorithm. The fundamental reasons for using the proposed LMK algorithm in the FLC are that it provides a fast convergence rate, a lower steady-state error and a robust behavior against sinusoidal noise distributions. The performance of the proposed FLC algorithm is assessed on the noise canceling problem by comparing that of the conventional FLC based on the LMS algorithm. The simulation results demonstrate that the proposed FLC based the modified LMK algorithm outperforms its conventional LMS algorithm in terms of the convergence rate and the steady-state error.\",\"PeriodicalId\":357613,\"journal\":{\"name\":\"2018 6th International Conference on Control Engineering & Information Technology (CEIT)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 6th International Conference on Control Engineering & Information Technology (CEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEIT.2018.8751891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIT.2018.8751891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这项研究中,我们提出了一种基于改进的最小平均峰度(LMK)算法的自适应傅立叶线性组合器(FLC),用于从期望信号中消除正弦噪声信号。在该框架中,采用改进的LMK算法代替传统的最小均方(LMS)算法来调整FLC的权系数。在FLC中使用所提出的LMK算法的根本原因是它提供了快速的收敛速率,较低的稳态误差和对正弦噪声分布的鲁棒性。通过与基于LMS算法的传统FLC算法进行比较,对所提FLC算法在消噪问题上的性能进行了评价。仿真结果表明,基于改进LMK算法的FLC在收敛速度和稳态误差方面都优于传统LMS算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Fourier Linear Combiner based on Modified Least Mean Kurtosis Algorithm
In this study, we propose an adaptive Fourier linear combiner (FLC) based on a modified least mean kurtosis (LMK) algorithm for canceling the sinusoidal noise signals from the desired signals. In the proposed framework, the weight coefficients of the FLC are adjusted by using the modified LMK algorithm instead of the conventional least mean square (LMS) algorithm. The fundamental reasons for using the proposed LMK algorithm in the FLC are that it provides a fast convergence rate, a lower steady-state error and a robust behavior against sinusoidal noise distributions. The performance of the proposed FLC algorithm is assessed on the noise canceling problem by comparing that of the conventional FLC based on the LMS algorithm. The simulation results demonstrate that the proposed FLC based the modified LMK algorithm outperforms its conventional LMS algorithm in terms of the convergence rate and the steady-state error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Approach for Moving Block Signalling System and Safe Distance Calculation Intersection Navigation Under Dynamic Constraints Using Deep Reinforcement Learning Public Health Surveillance System for Online Social Networks using One-Class Text Classification Micro-Flow Sensor Design and Implementation Based on Diamagnetic Levitation Detecting Road Lanes under Extreme Conditions: A Quantitative Performance Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1