一种能够记忆和再生动态的模块结构递归神经网络

Yisheng Li, Y. Miyanaga, K. Tochinai
{"title":"一种能够记忆和再生动态的模块结构递归神经网络","authors":"Yisheng Li, Y. Miyanaga, K. Tochinai","doi":"10.1109/APCCAS.1994.514515","DOIUrl":null,"url":null,"abstract":"In this report, a module structured recurrent neural network whose size is adaptively determined in a learning process is proposed. The network has the ability to memorize and regenerate any waveforms. In particular, this report shows any periodical waveforms can be approximated by using the minimum number of elementary modules. This network is constructed by adaptive oscillating modules. The adaptive oscillating module consists of two simple neuron nodes. Each node effects the other and itself for oscillating and all weights on connections are adaptively learned. The learning algorithm is based on the modified BP method. The learning of the total network is based on a different criterion called a constructive learning algorithm. In this algorithm, each module can independently learn with suitable speed for given input data. Some simulation examples are demonstrated to check the effectiveness of the proposed network structure and the learning algorithm.","PeriodicalId":231368,"journal":{"name":"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems","volume":"679 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A module structured recurrent neural network capable of memorizing and regenerating dynamics\",\"authors\":\"Yisheng Li, Y. Miyanaga, K. Tochinai\",\"doi\":\"10.1109/APCCAS.1994.514515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this report, a module structured recurrent neural network whose size is adaptively determined in a learning process is proposed. The network has the ability to memorize and regenerate any waveforms. In particular, this report shows any periodical waveforms can be approximated by using the minimum number of elementary modules. This network is constructed by adaptive oscillating modules. The adaptive oscillating module consists of two simple neuron nodes. Each node effects the other and itself for oscillating and all weights on connections are adaptively learned. The learning algorithm is based on the modified BP method. The learning of the total network is based on a different criterion called a constructive learning algorithm. In this algorithm, each module can independently learn with suitable speed for given input data. Some simulation examples are demonstrated to check the effectiveness of the proposed network structure and the learning algorithm.\",\"PeriodicalId\":231368,\"journal\":{\"name\":\"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems\",\"volume\":\"679 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS.1994.514515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.1994.514515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种在学习过程中自适应确定大小的模块结构递归神经网络。该网络具有记忆和再生任何波形的能力。特别地,本报告表明任何周期波形都可以用最小的基本模数来近似。该网络由自适应振荡模块构成。自适应振荡模块由两个简单的神经元节点组成。每个节点都会影响另一个节点和自身的振荡,并且连接上的所有权重都是自适应学习的。学习算法是基于改进的BP方法。整个网络的学习是基于一种不同的标准,称为建设性学习算法。在该算法中,每个模块可以根据给定的输入数据以合适的速度独立学习。一些仿真实例验证了所提出的网络结构和学习算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A module structured recurrent neural network capable of memorizing and regenerating dynamics
In this report, a module structured recurrent neural network whose size is adaptively determined in a learning process is proposed. The network has the ability to memorize and regenerate any waveforms. In particular, this report shows any periodical waveforms can be approximated by using the minimum number of elementary modules. This network is constructed by adaptive oscillating modules. The adaptive oscillating module consists of two simple neuron nodes. Each node effects the other and itself for oscillating and all weights on connections are adaptively learned. The learning algorithm is based on the modified BP method. The learning of the total network is based on a different criterion called a constructive learning algorithm. In this algorithm, each module can independently learn with suitable speed for given input data. Some simulation examples are demonstrated to check the effectiveness of the proposed network structure and the learning algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Area-time optimal digital BiCMOS carry look-ahead adder Hierarchical circuit optimization for analog LSIs using device model refining Decomposition-based 2-D variable digital filter design Artificial neural networks-learning and generalization Nonlinear gradient-based edge detection algorithms in the telesign system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1