模态分析中proony分析法与ERA分析法的比较研究

Meng Jia, N. Zhou, B. Amidan
{"title":"模态分析中proony分析法与ERA分析法的比较研究","authors":"Meng Jia, N. Zhou, B. Amidan","doi":"10.1109/PESGM.2016.7741262","DOIUrl":null,"url":null,"abstract":"The Prony analysis has been considered as a standard method for estimating oscillation modes using ringdown responses in a power grid. Extensive studies have been done to find its optimal performance conditions, but the comparisons between the Prony analysis and other modal analysis approaches from a user perspective are insufficient. This paper compares the performance of two modal analysis methods, i.e., the eigensystem realization algorithm (ERA) and the Prony analysis. Their performances are compared using a simple model and a 16-machine model. The influence of the parameters, such as the model order, the decimation factor, and signal-noise-ratio (SNR), on the modes' estimation accuracy is evaluated. Because of the randomness of noise, the Monte Carlo (MC) method is used to evaluate estimation accuracy. The median absolute deviation (MAD) is used as a metric for comparing the estimation errors. It is shown that the ERA has more preferred features than the Prony analysis in estimating power system modes.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A comparative study on the Prony analysis and the ERA for modal analysis\",\"authors\":\"Meng Jia, N. Zhou, B. Amidan\",\"doi\":\"10.1109/PESGM.2016.7741262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Prony analysis has been considered as a standard method for estimating oscillation modes using ringdown responses in a power grid. Extensive studies have been done to find its optimal performance conditions, but the comparisons between the Prony analysis and other modal analysis approaches from a user perspective are insufficient. This paper compares the performance of two modal analysis methods, i.e., the eigensystem realization algorithm (ERA) and the Prony analysis. Their performances are compared using a simple model and a 16-machine model. The influence of the parameters, such as the model order, the decimation factor, and signal-noise-ratio (SNR), on the modes' estimation accuracy is evaluated. Because of the randomness of noise, the Monte Carlo (MC) method is used to evaluate estimation accuracy. The median absolute deviation (MAD) is used as a metric for comparing the estimation errors. It is shown that the ERA has more preferred features than the Prony analysis in estimating power system modes.\",\"PeriodicalId\":155315,\"journal\":{\"name\":\"2016 IEEE Power and Energy Society General Meeting (PESGM)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Power and Energy Society General Meeting (PESGM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESGM.2016.7741262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Power and Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM.2016.7741262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

proony分析已被认为是利用电网的衰荡响应估计振荡模态的标准方法。为了找到其最佳性能条件,已经进行了大量的研究,但是从用户的角度比较proony分析和其他模态分析方法是不够的。本文比较了特征系统实现算法(ERA)和proony分析两种模态分析方法的性能。用简单模型和16机模型比较了它们的性能。分析了模型阶数、抽取因子、信噪比等参数对模态估计精度的影响。由于噪声的随机性,采用蒙特卡罗(MC)方法来评估估计精度。中位数绝对偏差(MAD)被用作比较估计误差的度量。结果表明,相对于proony分析,ERA在估计电力系统模式方面具有更多的优选特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparative study on the Prony analysis and the ERA for modal analysis
The Prony analysis has been considered as a standard method for estimating oscillation modes using ringdown responses in a power grid. Extensive studies have been done to find its optimal performance conditions, but the comparisons between the Prony analysis and other modal analysis approaches from a user perspective are insufficient. This paper compares the performance of two modal analysis methods, i.e., the eigensystem realization algorithm (ERA) and the Prony analysis. Their performances are compared using a simple model and a 16-machine model. The influence of the parameters, such as the model order, the decimation factor, and signal-noise-ratio (SNR), on the modes' estimation accuracy is evaluated. Because of the randomness of noise, the Monte Carlo (MC) method is used to evaluate estimation accuracy. The median absolute deviation (MAD) is used as a metric for comparing the estimation errors. It is shown that the ERA has more preferred features than the Prony analysis in estimating power system modes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A laboratory experiment of single machine synchronous islanding using PMUs and Raspberry Pi — A platform for multi-machine islanding Distributed vs. concentrated rapid frequency response provision in future great britain system Analysis of IEEE C37.118 and IEC 61850-90-5 synchrophasor communication frameworks A Review of probabilistic methods for defining reserve requirements DC fault protection strategy considering DC network partition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1