马来西亚商业建筑的混合光伏和电池系统规模:以UTeM的FKE-2大楼为例

Jahangir Hossain, A. Kadir, H. Shareef, Md. Alamgir Hossain
{"title":"马来西亚商业建筑的混合光伏和电池系统规模:以UTeM的FKE-2大楼为例","authors":"Jahangir Hossain, A. Kadir, H. Shareef, Md. Alamgir Hossain","doi":"10.1109/GlobConHT56829.2023.10087792","DOIUrl":null,"url":null,"abstract":"The increasing cost of electricity generation using fossil fuels has increased the growth in renewable energy resources (RER). In the context of commercial buildings., the electricity bill comprises energy usage in kWh and peak demand in kW. To reduce peak demand and thus electricity costs., a hybrid solar photovoltaic (PV) and battery energy storage system (BES) can be used to replace grid energy requirements. Yet., despite their attractiveness., PV and BES introduce another dimension of complexity. Therefore., careful selection of PV and BES capacity based on load demand is required to reduce total investment costs and the monthly electricity bill without sacrificing reliability. The PV -BES system is developed for a 20-year operating period using a single-objective optimization approach to reduce the objective function., which is the total net present cost (NPC). In this paper., a PV -BES energy management system with peak shaving is designed using real-time load patterns., solar insolation., ambient temperature., Malaysian net energy metering (NEM)., and the limitation of maximum exporting power supplied to the grid. Based on a scenario where PV capacity is constrained by the availability of rooftop space and NEM rates., the optimal PV and BES capacities are obtained for the analyzed system. The case study demonstrates that the average monthly cost of electricity bills could be reduced by 22.27%. It also revealed that the annual energy consumption and peak demand could be reduced by 22.62% and 15.85%., respectively., with additional benefits by selling 6177.782 kWh of electricity to the grid. The proposed method could be useful for sizing the PV-BES system for any Malaysian commercial building.","PeriodicalId":355921,"journal":{"name":"2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid PV and Battery System Sizing for Commercial Buildings in Malaysia: A Case Study of FKE-2 Building in UTeM\",\"authors\":\"Jahangir Hossain, A. Kadir, H. Shareef, Md. Alamgir Hossain\",\"doi\":\"10.1109/GlobConHT56829.2023.10087792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing cost of electricity generation using fossil fuels has increased the growth in renewable energy resources (RER). In the context of commercial buildings., the electricity bill comprises energy usage in kWh and peak demand in kW. To reduce peak demand and thus electricity costs., a hybrid solar photovoltaic (PV) and battery energy storage system (BES) can be used to replace grid energy requirements. Yet., despite their attractiveness., PV and BES introduce another dimension of complexity. Therefore., careful selection of PV and BES capacity based on load demand is required to reduce total investment costs and the monthly electricity bill without sacrificing reliability. The PV -BES system is developed for a 20-year operating period using a single-objective optimization approach to reduce the objective function., which is the total net present cost (NPC). In this paper., a PV -BES energy management system with peak shaving is designed using real-time load patterns., solar insolation., ambient temperature., Malaysian net energy metering (NEM)., and the limitation of maximum exporting power supplied to the grid. Based on a scenario where PV capacity is constrained by the availability of rooftop space and NEM rates., the optimal PV and BES capacities are obtained for the analyzed system. The case study demonstrates that the average monthly cost of electricity bills could be reduced by 22.27%. It also revealed that the annual energy consumption and peak demand could be reduced by 22.62% and 15.85%., respectively., with additional benefits by selling 6177.782 kWh of electricity to the grid. The proposed method could be useful for sizing the PV-BES system for any Malaysian commercial building.\",\"PeriodicalId\":355921,\"journal\":{\"name\":\"2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobConHT56829.2023.10087792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobConHT56829.2023.10087792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用化石燃料发电的成本不断上升,促进了可再生能源(RER)的增长。在商业建筑的背景下。,电费帐单包括以千瓦时计算的能源使用量和以千瓦计算的高峰需求。为了减少高峰需求,从而减少电费。在美国,一种混合太阳能光伏(PV)和电池储能系统(BES)可以用来取代电网的能源需求。然而。尽管他们很有吸引力。, PV和BES引入了另一个维度的复杂性。因此。,在不牺牲可靠性的前提下,根据负荷需求精心选择光伏和BES容量,以降低总投资成本和每月电费。PV -BES系统的开发周期为20年,使用单目标优化方法来减少目标函数。,即总净当前成本(NPC)。在本文中。,利用实时负荷模式设计了具有调峰功能的PV -BES能源管理系统。,日晒。,环境温度。,马来西亚净能源计量(NEM)。,以及最大输出供电网功率的限制。基于光伏容量受到屋顶空间可用性和NEM费率限制的场景。,得到了所分析系统的最佳PV和BES容量。案例研究表明,平均每月电费成本可降低22.27%。年能耗和峰值需求可分别降低22.62%和15.85%。,分别。通过向电网出售6177.782千瓦时的电力获得额外收益。所提出的方法可以用于任何马来西亚商业建筑的PV-BES系统的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid PV and Battery System Sizing for Commercial Buildings in Malaysia: A Case Study of FKE-2 Building in UTeM
The increasing cost of electricity generation using fossil fuels has increased the growth in renewable energy resources (RER). In the context of commercial buildings., the electricity bill comprises energy usage in kWh and peak demand in kW. To reduce peak demand and thus electricity costs., a hybrid solar photovoltaic (PV) and battery energy storage system (BES) can be used to replace grid energy requirements. Yet., despite their attractiveness., PV and BES introduce another dimension of complexity. Therefore., careful selection of PV and BES capacity based on load demand is required to reduce total investment costs and the monthly electricity bill without sacrificing reliability. The PV -BES system is developed for a 20-year operating period using a single-objective optimization approach to reduce the objective function., which is the total net present cost (NPC). In this paper., a PV -BES energy management system with peak shaving is designed using real-time load patterns., solar insolation., ambient temperature., Malaysian net energy metering (NEM)., and the limitation of maximum exporting power supplied to the grid. Based on a scenario where PV capacity is constrained by the availability of rooftop space and NEM rates., the optimal PV and BES capacities are obtained for the analyzed system. The case study demonstrates that the average monthly cost of electricity bills could be reduced by 22.27%. It also revealed that the annual energy consumption and peak demand could be reduced by 22.62% and 15.85%., respectively., with additional benefits by selling 6177.782 kWh of electricity to the grid. The proposed method could be useful for sizing the PV-BES system for any Malaysian commercial building.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved K-Type Seven-Level Converter Topology for Direct Grid Integration of Solar Photovoltaic Plant Multi-Period Optimization of Hybrid Energy Systems Using Mixed Integer Linear Programming Technical Comparison between Lead-acid and Lithium-ion Batteries Used in Microgrid UPS System A framework for Assessing the Reliability of Grid Networks by Modelling the Cyber-Physical Interdependencies of Dynamic Line Rating Components Operation of Unified Power Quality Conditioner with Photovoltaic Arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1